International audienceBulk Synchronous Parallel ML is a high-level language for programming parallel algorithms. Building upon OCaml and using the BSP model, it provides a safe setting for their implementation, avoiding concurrency related problems (deadlocks, indeterminism). Only a limited set of the features of OCaml can be used in BSML to respect its safety: this paper describes a way to add exception handling to this set by extending and adapting OCaml's exceptions. The behaviour of these new exceptions and the syntactic constructs to handle them, together with their implementation, are described in detail, and results over an example are given
Abstract-With the current generalisation of parallel architectures arises the concern of applying formal methods to parallelism. The complexity of parallel, compared to sequential, programs makes them more error-prone and difficult to verify. Bulk Synchronous Parallelism (BSP) is a model of computation which offers a high degree of abstraction like PRAM models but yet a realistic cost model based on a structured parallelism. We propose a framework for refining a sequential specification toward a functional BSP program, the whole process being done with the help of the Coq proof assistant. To do so we define BH, a new homomorphic skeleton, which captures the essence of BSP computation in an algorithmic level, and also serves as a bridge in mapping from high level specification to low level BSP parallel programs.
BSML, or Bulk Synchronous Parallel ML, is a high-level language based on ML and dedicated to parallel computation. In this paper, an extended type system that guarantees the safety of parallel programs is presented. It prevents non-determinism and deadlocks by ensuring that the invariants needed to preserve the structured parallelism are verified. Imperative extensions (references, exceptions) are included, and the system is designed for compatibility with modules.
Bulk Synchronous Parallel ML is a high-level language for programming parallel algorithms. Built upon OCaml and using the BSP model, it provides a safe setting for their implementation, avoiding concurrency related problems (deadlocks, indeterminism). Only a limited set of the features of OCaml can be used in BSML to respect its properties of safety: this paper describes a way to add exception handling to this set by extending and adapting OCaml's exceptions. The behaviour of these new exceptions and the syntactic constructs to handle them, together with their implementation, are described in detail, and results over an example are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.