The COVID-19 pandemic hit societies in full force in 2020 and compelled people all around the world to change their lifestyle. The time spent at home significantly surged during the pandemic and this change in occupancy can have a direct impact on building energy consumption. COVID-19 lockdowns also accelerated the transition towards telework, a trend that many expect to last. Changes in energy consumption under lockdown is thus a valuable asset to forecast how energy could be consumed in buildings in the future. Here, we aim to quantify the impacts of the COVID-19 lockdown on the energy consumption (electricity, hot water and space heating) in residential buildings by answering these two questions: (i) Did the lockdown lead to changes in total energy consumption?, and (ii) Did the lockdown lead to changes in consumption patterns (i.e. time of the day at which energy is consumed)? To do so, we compared the energy consumption measured in a 40-dwelling social housing building located in Quebec City (Canada) during four months of lockdown to those of the months that preceded the lockdown. It is found that consumption patterns for electricity and hot water changed for the first two months of the lockdown, when the most intensive lockdown measures were applied. Overall consumption slightly increased for these two energy expenditures, but the more important change was that consumption occurred throughout the day instead of being concentrated in the evening as observed before the lockdown. Results shed light on the impact of lockdown on energy bills for consumers and on how energy utilities might be solicited during this kind of episode.
SUMMARYThis paper presents a procedure for minimizing the cost of a shell-and-tube heat exchanger based on genetic algorithms (GA). The global cost includes the operating cost (pumping power) and the initial cost expressed in terms of annuities. Eleven design variables associated with shell-and-tube heat exchanger geometries are considered: tube pitch, tube layout patterns, number of tube passes, baffle spacing at the centre, baffle spacing at the inlet and outlet, baffle cut, tube-to-baffle diametrical clearance, shell-to-baffle diametrical clearance, tube bundle outer diameter, shell diameter, and tube outer diameter. Evaluations of the heat exchangers performances are based on an adapted version of the Bell-Delaware method. Pressure drops constraints are included in the procedure. Reliability and maintenance due to fouling are taken into account by restraining the coefficient of increase of surface into a given interval. Two case studies are presented. Results show that the procedure can properly and rapidly identify the optimal design for a specified heat transfer process.
The design of ground-coupled heat pump systems requires knowledge of the thermal properties of the subsurface and boreholes. These properties can be measured with in situ thermal response tests (TRT), where a heat transfer fluid flowing in a ground heat exchanger is heated with an electric element and the resulting temperature perturbation is monitored. These tests are analogous to standard pumping tests conducted in hydrogeology, because a system that is initially assumed at equilibrium is perturbed and the response is monitored in time, to assess the system's properties with inverse modeling. Although pumping test analysis is a mature topic in hydrogeology, the current analysis of temperature measurements in the context of TRTs is comparatively a new topic and it could benefit from the application of concepts related to pumping tests. The purpose of this work is to review the methodology of TRTs and improve their analysis using pumping test concepts, such as the well function, the superposition principle, and the radius of influence. The improvements are demonstrated with three TRTs. The first test was conducted in unsaturated waste rock at an active mine and the other two tests aimed at evaluating the performance of thermally enhanced pipe installed in a fully saturated sedimentary rock formation. The concepts borrowed from pumping tests allowed the planning of the duration of the TRTs and the analysis of variable heat injection rate tests accounting for external heat transfer and temperature recovery, which reduces the uncertainty in the estimation of thermal properties.
This paper introduces a method for designing vertical ground heat exchangers and heat pump systems, by minimizing the total cost of the project. The total cost includes an initial cost composed of drilling, excavation, heat pump and piping network. An operational cost is also included to account for the energy consumed for heating/cooling a building. The procedure allows determining the optimal number of boreholes, their depth and spacing, and the optimal size of the heat pump. The method is tested for different ground conductivity and heat demands. The method can also be used to determine the economical viability of a TRT. For tested cases, results show that the excess cost due to uncertainty on ground thermal conductivity increases with the number of boreholes. Also, a cost sensibility analysis shows that the most influential parameters are the number of boreholes and their depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.