We previously demonstrated that exposure to febrile-range hyperthermia (FRH) accelerates pathogen clearance and increases survival in murine experimental Klebsiella pneumoniae peritonitis. However, FRH accelerates lethal lung injury in a mouse model of pulmonary oxygen toxicity, suggesting that the lung may be particularly susceptible to injurious effects of FRH. In the present study, we tested the hypothesis that, in contrast with the salutary effect of FRH in Gram-negative peritonitis, FRH would be detrimental in multilobar Gram-negative pneumonia. Using a conscious, temperature-clamped mouse model and intratracheal inoculation with K. pneumoniae Caroli strain, we showed that FRH tended to reduce survival despite reducing the 3 day-postinoculation pulmonary pathogen burden by 400-fold. We showed that antibiotic treatment rescued the euthermic mice, but did not reduce lethality in the FRH mice. Using an intratracheal bacterial endotoxin LPS challenge model, we found that the reduced survival in FRH-treated mice was accompanied by increased pulmonary vascular endothelial injury, enhanced pulmonary accumulation of neutrophils, increased levels of IL-1β, MIP-2/CXCL213, GM-CSF, and KC/CXCL1 in the bronchoalveolar lavage fluid, and bronchiolar epithelial necrosis. These results suggest that FRH enhances innate host defense against infection, in part, by augmenting polymorphonuclear cell delivery to the site of infection. The ultimate effect of FRH is determined by the balance between accelerated pathogen clearance and collateral tissue injury, which is determined, in part, by the site of infection.
The mechanisms by which neural and glial progenitor cells in the adult brain respond to tissue injury are unknown. We studied the responses of these cells to stab wound injury in rats and in two transgenic mouse models in which Y/GFP is driven either by Sox2 (a neural stem cell marker) or by Talpha-1 (which marks newly born neurons). The response of neural progenitors was low in all nonneurogenic regions, and no neurogenesis occurred at the injury site. Glial progenitors expressing Olig2 and NG2 showed the greatest response. The appearance of these progenitors preceded the appearance of reactive astrocytes. Surprisingly, we found evidence of the translocation of the transcription factor Olig2 into cytoplasm in the first week after injury, a mechanism that is known to mediate the differentiation of astrocytes during brain development. Translocation of Olig2, down-regulation of NG2, and increased glial fibrillary acidic protein expression were recapitulated in vitro after exposure of glial progenitors to serum components or bone morphogentic protein by up-regulation of Notch-1. The glial differentiation and Olig2 translocation could be blocked by inhibition of Notch-1 with the gamma-secretase inhibitor DAPT. Together, these data indicate that the prompt maturation of numerous Olig2(+) glial progenitors to astrocytes underlies the repair process after a traumatic injury. In contrast, neural stem cells and neuronal progenitor cells appear to play only a minor role in the injured adult CNS.
Experimental challenge studies with Campylobacter jejuni were conducted in 3.5-month-old infant Macaca mulatta. One infant monkey (92-1) was challenged with 2.7 x 10(10) cfu of strain 78-37. A second infant was infected intentionally by natural transmission. The infants developed diarrhea 32 h after challenge of infant 92-1. Electron microscopic observations indicate that cell invasion is the primary mechanism of colon damage and diarrheal disease caused by C. jejuni. Intracellular C. jejuni were located in membrane-bound vacuoles and were free in the cytoplasm. Damaged epithelial cells exhibited premature apoptosis and were exfoliated into the lumen of the colon. C. jejuni were also located extracellularly in the mucosa and submucosa. Some cells had dilated endoplasmic reticulum, indicating possible alteration in ion and water transport.
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.