Background: Angiogenesis, the formation of new blood vessels, is an integral part of both normal developmental processes and numerous pathologies, ranging from tumor growth and metastasis to inflammation and ocular disease. Angiogenesis assays are used to test efficacy of both pro-and antiangiogenic agents. Methods: Most studies of angiogenesis inducers and inhibitors rely on various models, both in vitro and in vivo, as indicators of efficacy. In this report we describe the principal methods now in use: the in vivo Matrigel plug and corneal neovascularization assays, the in vivo/in vitro chick chorioallantoic membrane (CAM) assay, and the in vitro cellular (proliferation, migration, tube formation) and organotypic (aortic ring) assays. We include description of two new methods, the chick aortic arch and the Matrigel sponge assays. Conclusions: In vitro tests are valuable, can be carried out expeditiously, and lend themselves to quantification, but must be interpreted with extreme caution. In vitro tests are best viewed as providing initial information, subject to confirmation by in vivo assays. Multiple tests should be used to obtain maximum benefit from in vitro tests. In vivo tests are more difficult and timeconsuming to perform, thereby limiting the number of tests that can run at any one time. Quantification is generally more difficult as well. However, in vivo assays are essential because of the complex nature of vascular responses to test reagents, responses that no in vitro model can fully achieve.
The effect of irradiation of tumors on their ability to induce vascular responses (angiogenesis) was studied. Rat Walker carcino-sarcoma 256, rabbit V2 carcinoma, mouse (C57B1) melanoma and mouse (129) teratoma (OTT 6050, 100K) were irradiated with up to 5000R, then grafted either to the chicken chorioallantoic membrane or intracorneally into adult rabbits to assess competence to provoke angiogenesis. For all tumors and both assay systems the results were similar: irradiation did not interfere with tumor-induced vascular responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.