Food-web processes are important controls of oceanic biogenic carbon flux and ocean-atmosphere carbon dioxide exchange. Two key controlling parameters are the growth efficiencies of the principal trophic components and the rate of carbon remineralization. We report that bacterial growth efficiency is an inverse function of temperature. This relationship permits bacterial respiration in the euphotic zone to be computed from temperature and bacterial production. Using the temperature-growth efficiency relationship, we show that bacterial respiration generally accounts for most community respiration. This implies that a larger fraction of assimilated carbon is respired at low than at high latitudes, so a greater proportion of production can be exported in polar than in tropical regions. Because bacterial production is also a function of temperature, it should be possible to compute euphotic zone heterotrophic respiration at large scales using remotely sensed information.
We recorded vertical profiles of size distributions of large particles (.100 mm) to a 1000-m depth in the Atlantic, Indian, and Pacific Oceans and in the Mediterranean Sea with the Underwater Video Profiler. Of the 410 profiles used in our analysis, 193 also included temperature, salinity, and high-performance liquid chromatography (HPLC)-resolved pigments, which were used to characterize the size structure of the phytoplankton community. Classification analysis identified six clusters of vertical profiles of size distributions of particles. Each cluster was characterized by the size distribution of its particles in the mesopelagic layer and the change of the particle-size distribution with depth. Clusters with large particles in the mesopelagic layer corresponded to surface waters dominated by microphytoplankton, and those with small particles corresponded to surface waters dominated by picophytoplankton. We estimated the mass flux at 400 m using a relationship between particle size and mass flux. Principal-component regression analysis showed that 68% of the variance of the mass flux at 400 m was explained by the size structure of the phytoplankton community and integrated chlorophyll a in the euphotic zone. We found that coefficient k in the Martin power relationship, which describes the decrease in the vertical mass flux with depth, varies between 0.2 and 1.0 in the world ocean, and we provided an empirical relationship to derive k from the size structure of phytoplankton biomass in the euphotic zone. Biogeochemists and modelers could use that relationship to obtain a realistic description of the downward particle flux instead of using a constant k value as often done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.