The previously developed chelator O-aminophenol-N,N,O-triacetic acid (APTRA) (L. A. Levy, E. Murphy, B. Raju, and R. E. London. Biochemistry 27: 4041-4048, 1988) has been modified to yield a fluorescent analogue which can be utilized as an intracellular probe for ionized Mg2+. The fluorescent analogue, FURAPTRA, with a magnesium dissociation constant of 1.5 mM, is structurally analogous to the calcium chelator fura-2 and exhibits a similar excitation shift on magnesium complexation. Hence, data on the intracellular Mg2+ concentration can be obtained using an analogous ratio method. The acetoxymethyl form of the chelator is readily loaded into cells and has been used to determine a cytosolic free Mg2+ concentration of 0.59 mM for isolated rat hepatocytes. As a consequence of the relatively high levels of cytosolic Mg2+, the problem of ion buffering is much less severe than for the analogous calcium indicators.
Changes in cytosolic free calcium concentration during myocardial ischemia were measured by 19F NMR in 5FBAPTA-loaded perfused rat hearts. The hearts were perfused with Krebs-Henseleit buffer containing 5 microM of the acetoxymethyl ester of 5FBAPTA, which was hydrolyzed by cytosolic esterases to achieve cytosolic concentrations of 5FBAPTA of 0.12 to 0.65 mM. Cytosolic free calcium concentrations were calculated as the product of the ratio of peak areas for bound and free 5FBAPTA in the NMR spectra and the dissociation constant (708 nM). The basal cytosolic calcium concentration, measured in potassium or magnesium arrested hearts, was 252 nM, and the time-average calcium concentration in beating hearts was 630 nM. Following the onset of total ischemia, there was no immediate substantial change in cytosolic calcium despite a rapid decline in creatine phosphate and ATP and a marked increase in inorganic phosphate as monitored by 31P NMR, but by 10 minutes, there was a substantial increase in free calcium concentration. The ratio of peak areas of bound and free 5FBAPTA returned to the preischemic value during reperfusion, and there was no detectable loss of 5FBAPTA from the heart. Creatine phosphate was also restored to its preischemic level during reperfusion. These results indicate that cytosolic free calcium increases during ischemia and is not immediately associated with lethal injury. This increase in cytosolic calcium may activate degradative enzymes that eventually could compromise myocyte viability.
The characteristics of the acetylation of dapsone (avlosulfon) were found to parallel those of isoniazid and sulfamethazine in 19 subjects, thereby establishing the genetic polymorphism for the acetylation of dapsone. This polymorphism was revealed by the distribution of the ratios of the plasma concentration of acetylated to parent drug. The acetylation capacity for dapsone was shown to be a reproducible, individual characteristic. Acetylation of dapsone and deacetylation of monoacetyl dapsone occurred concurrently. Constant plasma ratios of acetylated to parent drug characteristic for the individual were attained immediately after administration of dapsone but only after several hours following administration of monoacetyl dapsone. The available data suggest that acetylation rather than deacetylation is the primary determinant of these ratios. Rates of disappearance of dapsone and monoacetyl dapsone from the plasma were the same regardless of which of the two was administered or of the acetylator phenotype of the subject. After dapsone, no differences between rapid and slow acetylators were found in the 24 hour urinary excretion of dapsone and its conjugates hydrolyzed by mild or strong acid treatment. Rapid acetylators excreted significantly more monoacetyl dapsone and its acidlabile conjugates than slow acetylators. Because these compounds accounted for only a very small fraction of the dose, it was not possible to phenotype individuals by these measurements. More dapsone and acid‐hydrolyzable conjugates of dapsone were found in 120 hour urine collections after monoacetyl dapsone than after dapsone in both phenotypes.
R67 dihydrofolate reductase (DHFR) is a type II DHFR produced by bacteria as a resistance mechanism to the increased clinical use of the antibacterial drug trimethoprim. Type II DHFRs are not homologous in either sequence or structure with chromosomal DHFRs. The type II enzymes contain four identical subunits which form a homotetramer containing a single active site pore accessible from either end. Although the crystal structure of the complex of R67 DHFR with folate has been reported [Narayana et al. (1995) Nat. Struct. Biol. 2, 1018], the nature of the ternary complex which must form with substrate and cofactor is unclear. We have performed transferred NOE and interligand NOE (ILOE) studies to analyze the ternary complexes formed from NADP(+) and folate in order to probe the structure of the ternary complex. Consistent with previous studies of the binary complex formed from another type II DHFR, the ribonicotinamide bond of NADP(+) was found to adopt a syn conformation, while the adenosine moiety adopts an anti conformation. Large ILOE peaks connecting NADP(+) H4 and H5 with folate H9 protons are observed, while the absence of a large ILOE connecting NADP(+) H4 and H5 with folate H7 indicates that the relative orientation of the two ligands differs significantly from the orientation in the chromosomal enzyme. To obtain more detailed insight, we prepared and studied the folate analogue 2-deamino-2-methyl-5,8-dideazafolate (DMDDF) which contains additional protons in order to provide additional NOEs. For this analogue, the exchange characteristics of the corresponding ternary complex were considerably poorer, and it was necessary to utilize higher enzyme concentrations and higher temperature in order to obtain ILOE information. The results support a structure in which the NADP(+) and folate/DMDDF molecules extend in opposite directions parallel to the long axis of the pore, with the nicotinamide and pterin ring systems approximately stacked at the center. Such a structure leads to a ternary complex which is in many respects similar to the gas-phase theoretical calculations of the dihydrofolate-NADPH transition state by Andres et al. [(1996) Bioorg. Chem. 24, 10-18]. Analogous NMR studies performed on folate, DMDDF, and R67 DHFR indicate formation of a ternary complex in which two symmetry-related binding sites are occupied by folate and DMDDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.