Mesenchymal stem cells (MSC) are of particular interest for their potential clinical use in tissue engineering as well as for their capacity to reduce the incidence and severity of graftversus-host disease in allogeneic transplantation. We have previously shown that MSC-mediated immune suppression acts via the secretion of soluble factor(s) induced upon stimulation. The aim of this study was to identify the molecule(s) involved and the underlying mechanism(s). We show that murine MSC secrete high levels of interleukin (IL)-6 and vascular endothelial growth factor, which are directly correlated to the inhibition of T-cell proliferation. The T-cell activation is partially restored upon addition of a neutralizing anti-IL-6 antibody or the prostaglandin E2 inhibitor indomethacin. Interestingly, no indoleamine 2,3-dioxygenase activity was detected in our conditions. Instead, we show that MSC reduce the expression of major histocompatibility complex class II, CD40, and CD86 costimulatory molecules on mature dendritic cells (DC), which was responsible for a decrease in T-cell proliferation. Moreover, we show that the differentiation of bone marrow progenitors into DC cultured with conditioned supernatants from MSC was partly inhibited through the secretion of IL-6. Altogether, these data suggest that IL-6 is involved in the immunoregulatory mechanism mediated by MSC through a partial inhibition of DC differentiation but is probably not the main mechanism.
Summary Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible mice (Il4raF709) with enhanced IL-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of T helper 2 (Th2) cell-like phenotype, also found in peripheral blood allergen-specific Treg cells of food allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg cell lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Treg cell Th2 cell reprogramming. Interruption of Treg cell Th2 cell reprogramming may thus provide novel therapeutic strategies in food allergy.
Background A number of heritable immune dysregulatory diseases result from defects affecting T regulatory (TR) cell development and/or function. They include Immune dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX), due to mutations in FOXP3, and IPEX-like disorders caused by mutations in IL2RA, STAT5b and STAT1. However, the genetic defects underlying many cases of IPEX-like disorders remain unknown. Objective We sought to identify the genetic abnormalities in subjects with idiopathic IPEX-like disorders. Methods We performed whole exome and targeted gene sequencing, and phenotypic and functional analyses of TR cells. Results A child who presented with an IPEX-like syndrome and severe TR cell deficiency was found to harbor a nonsense mutation in the gene encoding LPS-responsive beige-like anchor (LRBA), previously implicated as cause of common variable immunodeficiency with autoimmunity. Analysis of subjects with LRBA deficiency revealed marked TR cell depletion, profoundly decreased expression of canonical TR cell markers, including FOXP3, CD25, Helios, and CTLA4 and impaired TR cell-mediated suppression. There was skewing in favor of memory T cells and intense autoantibody production with marked expansion of T follicular helper and contraction of T follicular regulatory cells. Whereas the frequency of recent thymic emigrants and the differentiation of induced TR cells were normal, LRBA-deficient T cells exhibited increased apoptosis and reduced activities of the metabolic sensors mammalian target of rapamycin 1 and 2 complexes. Conclusion LRBA deficiency is a novel cause of IPEX-like syndrome and TR cell deficiency associated with metabolic dysfunction and increased apoptosis of TR cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.