Background Anthropogenic disturbances are increasingly affecting the vitality of tropical dry forests. The future condition of this important biome will depend on its capability to resist and recover from these disturbances. So far, the temporal stability of dryland forests is rarely studied, even though identifying the important factors associated with the stability of the dryland forests could serve as a basis for forest management and restoration. Methodology In a degraded dry Afromontane forest in northern Ethiopia, we explored remote sensing derived indicators of forest stability, using MODIS satellite derived NDVI time series from 2001 to 2018. Resilience and resistance were measured using the anomalies (remainders) after time series decomposition into seasonality, trend and remainder components. Growth stability was calculated using the integral of the undecomposed NDVI data. These NDVI derived stability indicators were then related to environmental factors of climate, topography, soil, tree species diversity, and local human disturbance, obtained from a systematic grid of field inventory plots, using boosted regression trees in R. Results Resilience and resistance were adequately predicted by these factors with an R2 of 0.67 and 0.48, respectively, but the model for growth stability was weaker. Precipitation of the wettest month, distance from settlements and slope were the most important factors associated with resilience, explaining 51% of the effect. Altitude, temperature seasonality and humus accumulation were the significant factors associated with the resistance of the forest, explaining 61% of the overall effect. A positive effect of tree diversity on resilience was also important, except that the impact of species evenness declined above a threshold value of 0.70, indicating that perfect evenness reduced the resilience of the forest. Precipitation of the wettest month was the most important factor explaining 43.52% of the growth stability variation. Conclusion A combination of climate, topographic factors and local human disturbance controlled the stability of the dry forest. Also tree diversity is an important stability component that should be considered in the management and restoration programs of such degraded forests. If local disturbances are alleviated the recovery time of dryland forests could be shortened, which is vital to maintain the ecosystem services these forests provide to local communities and global climate change.
Introduction: Anthropogenic disturbances are increasingly affecting the vitality of tropical dry forests. The future condition of this important biome will depend on its capability to resist, and recover from these disturbances. So far, the temporal stability of dryland forests is rarely studied, but could serve as a basis for forest management and restoration. Methodology: In a degraded dry Afromontane forest in northern Ethiopia, we explored remote sensing derived indicators of forest stability, using MODIS satellite derived NDVI time series from 2001 to 2018. Resilience, resistance and variability were measured using the anomalies (remainders) after time series decomposition into seasonality, trend and remainder components. Growth stability was calculated using the integral of the undecomposed NDVI data. These NDVI derived stability indicators were then related to environmental factors of climate, topography, soil, tree species diversity, and disturbance, obtained from a systematic grid of field inventory plots, using boosted regression trees in R. Resilience and resistance were adequately predicted by these factors with an R2 of 0.67 and 0.48, respectively, but the models for variability and growth stability were weaker. Precipitation of the wettest month, distance from settlements and slope were the most important factors associated with resilience, explaining 51% of the effect. Altitude, temperature seasonality and humus accumulation were the significant factors associated with the resistance of the forest, explaining 61% of the overall effect. A positive effect of tree diversity on resilience was also significant, except that the impact of species evenness declined above a threshold value of 0.70, indicating that perfect evenness reduced the resilience of the forest. Conclusion: A combination of climate, topographic variables and disturbance indicators controlled the stability of the dry forest. Tree diversity is an important component that should be considered in the management and restoration programs of such degraded forests. If local disturbances are alleviated the recovery time of dryland forests could be shortened, which is vital to maintain the ecosystem services these forests provide to local communities and global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.