This paper primarily investigates the use of shape-based features by an Automatic Target Recognition (ATR) system to classify various types of targets in Synthetic Aperture Radar (SAR) images. In specific, shapes of target outlines are represented via Elliptical Fourier Descriptors (EFDs), which, in turn, are utilized as recognition features. According to the proposed ATR approach, a segmentation stage first isolates the target region from shadow and ground clutter via a sequence of fast thresholding and morphological operations. Next, a number of EFDs are computed that can sufficiently describe the salient characteristics of the target outline. Finally, a classification stage based on an ensemble of Support Vector Machines identifies the target with the appropriate class label. In order to experimentally illustrate the merit of the proposed approach, SAR intensity images from the well-known Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset were used as 10-class and 3-class recognition problems. Furthermore, comparisons were drawn in terms of classification performance and computational complexity to other successful methods discussed in the literature, such as template matching methods. The obtained results portray that only a very limited amount of EFDs are required to achieve recognition rates that are competitive to well-established approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.