The solution of large sparse linear systems is one of the most time consuming kernels in many numerical simulations. The domain decomposition community has developed many efficient and robust methods in the last decades. While many of these solvers fall into the abstract Schwarz (aS) framework, their robustness has originally been demonstrated on a case-by-case basis. In this paper, we propose a bound for the condition number of all deflated aS methods provided that the coarse grid consists of the assembly of local components that contain the kernel of some local operators. We show that classical results from the literature on particular instances of aS methods can be retrieved from this bound. We then show that such a coarse grid correction can be explicitly obtained algebraically via generalized eigenproblems, leading to a condition number independent of the number of domains. This result can be readily applied to retrieve or improve the bounds previously obtained via generalized eigenproblems in the particular cases of Neumann-Neumann (NN), Additive Schwarz (AS) and optimized Robin but also generalizes them when applied with approximate local solvers. Interestingly, the proposed methodology turns out to be a comparison of the considered particular aS method with generalized versions of both NN and AS for tackling the lower and upper part of the spectrum, respectively. We furthermore show that the application of the considered grid corrections in an additive fashion is robust in the AS case although it is not robust for aS methods in general. In particular, the proposed framework allows for ensuring the robustness of the AS method applied on the Schur complement (AS/S), either with deflation or additively, and with the freedom of relying on an approximate local Schur complement. Numerical experiments illustrate these statements.
High-performance computing (HPC) aims at developing models and simulations for applications in numerous scientific fields. Yet, the energy consumption of these HPC facilities currently limits their size and performance, and consequently the size of the tackled problems. The complexity of the HPC software stacks and their various optimizations makes it difficult to finely understand the energy consumption of scientific applications. To highlight this difficulty on a concrete use-case, we perform an energy and power analysis of a software stack for the simulation of frequency-domain electromagnetic wave propagation. This solver stack combines a high order finite element discretization framework of the system of three-dimensional frequency-domain Maxwell equations with an algebraic hybrid iterative-direct sparse linear solver. This analysis is conducted on the KNLbased PRACE-PCP system. Our results illustrate the difficulty in predicting how to trade energy and runtime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.