Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.
The hallmarks of pulmonary infection are lung granulomas. These organized structures are composed of host immune cells whose purpose is to contain or clear infection, creating a complex hub of immune and bacterial cell activity, as well as limiting pathology in the lungs. Yet, given cellular activity and the potential for frequent interactions between host immune cells and-infected cells, we observed a surprisingly low quantity of cytokine-producing T cells (<10% of granuloma T cells) in our recent study of infection within nonhuman primate (NHP) granulomas. Various mechanisms could limit T cell function, and one hypothesis is T cell exhaustion. T cell exhaustion is proposed to result from continual antigen stimulation, inducing them to enter a state characterized by low cytokine production, low proliferation, and expression of a series of inhibitory receptors, the most common being PD-1, LAG-3, and CTLA-4. In this work, we characterized the expression of inhibitory receptors on T cells and the functionality of these cells in tuberculosis (TB) lung granulomas. We then used these experimental data to calibrate and inform an agent-based computational model that captures environmental, cellular, and bacterial dynamics within granulomas in lungs during infection. Together, the results of the modeling and the experimental work suggest that T cell exhaustion alone is not responsible for the low quantity of -responsive T cells observed within TB granulomas and that the lack of exhaustion is likely an intrinsic property of granuloma structure.
Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.