In the developed world, the hazards associated with obesity have largely outstripped the risk of starvation. Obesity remains a difficult public health issue to address, due in large part to the many disciplines involved. A full understanding requires knowledge in the fields of genetics, endocrinology, psychology, sociology, economics, and public policy – among others. In this short review, which serves as an introduction to the Frontiers in Endocrinology research topic, we address one cross-disciplinary relationship: the interaction between the hunger/satiation neural circuitry, an individual’s perceived locus of control, and the risk for obesity. Mammals have evolved a complex system for modulating energy intake. Overlaid on this, in humans, there exists a wide variation in “perceived locus of control” – that is, the extent to which an individual believes to be in charge of the events that affect them. Whether one has primarily an internal or external locus of control itself affects, and is affected by, external and physiological factors and has been correlated with the risk for obesity. Thus, the path from hunger and satiation to an individual’s actual behavior may often be moderated by psychological factors, included among which is locus of control.
We introduce a novel method for fabricating nano-and microscale polyaniline particles containing an entrapped oxidoreductase enzyme for use in biosensing applications. This facile process utilizes the reprecipitation of the emeraldine base form of polyaniline from an aqueous-organic suspension, with hydrophobic collapse and subsequent cross-linking of the polymer induced by adjusting the ionic strength beyond a critical threshold. We present UV-vis spectroscopy data, including a quantitative treatment of the spectral line width, along with dynamic light scatting results, to explain the conformation changes in the polyaniline chains that accompany this transition. The resultant aggregated supermolecular polyaniline formations immobilize enzymes via gelation entrapment, augmented by electrostatic attraction, without the need for harsh reaction conditions or additional reagents. Because of its strong optical features at visible wavelengths that can serve as probes for chain conformation, oxidation state, and protonation level, polyaniline may act as a model system for the study of hydrophobic and ion screening effects in proteins and other foldamers.
This article introduces a novel binary representation of the canonical genetic code based on both the structural similarities of the nucleotides, as well as the physicochemical properties of the encoded amino acids. Each of the four mRNA bases is assigned a unique 2-bit identifier, so that the 64 triplet codons are each indexed by a 6-bit label. The ordering of the bits reflects the hierarchical organization manifested by the DNA replication/repair and tRNA translation systems. In this system, transition and transversion mutations are naturally expressed as binary operations, and the severities of the different point mutations can be analyzed. Using a principal component analysis, it is shown that the physicochemical properties of amino acids related to protein folding also correlate with certain bit positions of their respective labels. Thus, the likelihood for a point mutation to be conservative, and less likely to cause a change in protein functionality, can be estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.