A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas—alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal–organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer−Emmett−Teller (BET) area of 7310 m2 g−1 and a volumetric BET area of 2060 m2 cm−3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g−1) with an uptake of 0.66 g g−1 [262 cm3 (standard temperature and pressure, STP) cm−3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g−1 [238 cm3 (STP) cm−3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter−1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).
Zr-based metal-organic frameworks (MOFs) have been known for their excellent stability; however, due to the high connectivity of the Zr nodes, it is challenging to introduce flexibility into Zr-MOFs. Here we present a flexible Zr-MOF named NU-1400 comprising 4-connected Zr nodes and tetratopic linkers. It exhibits guest-dependent structural flexibility with up to 48% contraction in the unit cell volume as evidenced by single-crystal X-ray diffraction studies. The expanded or contracted conformations of NU-1400 showed drastically different reactivity toward the hydrolysis of a nerve agent simulant owing to the size-selective effect toward the reactant.
As the field of metal-organic frameworks (MOFs) continues to grow, the physical stability and mechanical properties of these porous materials has become a topic of great interest. While strategies for synthesizing MOFs with desirable chemical functionalities or pore sizes have been established over the past twenty years, design principles to modulate the response of MOFs to mechanical stress are still underdeveloped. The inherent porosity of these frameworks results in many interesting and sometimes unexpected phenomena upon exposure to elevated pressures and other physical stimuli. Beyond its fundamental importance, an understanding of mechanical properties (e.g. bulk modulus, shear modulus, Young's modulus, linear compressibility, and Poisson's ratio) plays an essential role in the post-synthetic processing of MOFs, which has implications in the successful transition of these materials from academic interest to industrial relevance. This perspective provides a concise overview of the efforts to understand the mechanical properties of MOFs through experimental and computational methods. Additionally, current limitations and possible future directions for the field are also discussed briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.