Interferon-gamma is an immunomodulatory substance that induces the expression of many genes to orchestrate a cellular response and establish the antiviral state of the cell. Among the most abundant antiviral proteins induced by interferon-gamma are guanylate-binding proteins such as GBP1 and GBP2. These are large GTP-binding proteins of relative molecular mass 67,000 with a high-turnover GTPase activity and an antiviral effect. Here we have determined the crystal structure of full-length human GBP1 to 1.8 A resolution. The amino-terminal 278 residues constitute a modified G domain with a number of insertions compared to the canonical Ras structure, and the carboxy-terminal part is an extended helical domain with unique features. From the structure and biochemical experiments reported here, GBP1 appears to belong to the group of large GTP-binding proteins that includes Mx and dynamin, the common property of which is the ability to undergo oligomerization with a high concentration-dependent GTPase activity.
Small GTP-binding (G) proteins are activated by GDP/GTP nucleotide exchange stimulated by guanine nucleotide exchange factors (GEFs). Nucleotide dissociation from small G protein-GEF complexes involves transient GDP-bound intermediates whose structures have never been described. In the case of Arf proteins, small G proteins that regulate membrane traffic in eukaryotic cells, such intermediates can be trapped either by the natural inhibitor brefeldin A or by charge reversal at the catalytic glutamate of the Sec7 domain of their GEFs. Here we report the crystal structures of these intermediates that show that membrane recruitment of Arf and nucleotide dissociation are separate reactions stimulated by Sec7. The reactions proceed through sequential rotations of the Arf.GDP core towards the Sec7 catalytic site, and are blocked by interfacial binding of brefeldin A and unproductive stabilization of GDP by charge reversal. The structural characteristics of the reaction and its modes of inhibition reveal unexplored ways in which to inhibit the activation of small G proteins.
Interferons are immunomodulatory cytokines that mediate anti-pathogenic and anti-proliferative effects in cells. Interferon-gamma-inducible human guanylate binding protein 1 (hGBP1) belongs to the family of dynamin-related large GTP-binding proteins, which share biochemical properties not found in other families of GTP-binding proteins such as nucleotide-dependent oligomerization and fast cooperative GTPase activity. hGBP1 has an additional property by which it hydrolyses GTP to GMP in two consecutive cleavage reactions. Here we show that the isolated amino-terminal G domain of hGBP1 retains the main enzymatic properties of the full-length protein and can cleave GDP directly. Crystal structures of the N-terminal G domain trapped at successive steps along the reaction pathway and biochemical data reveal the molecular basis for nucleotide-dependent homodimerization and cleavage of GTP. Similar to effector binding in other GTP-binding proteins, homodimerization is regulated by structural changes in the switch regions. Homodimerization generates a conformation in which an arginine finger and a serine are oriented for efficient catalysis. Positioning of the substrate for the second hydrolysis step is achieved by a change in nucleotide conformation at the ribose that keeps the guanine base interactions intact and positions the beta-phosphates in the gamma-phosphate-binding site.
Arf proteins are important regulators of cellular traffic and the founding members of an expanding family of homologous proteins and genomic sequences. They depart from other small GTP-binding proteins by a unique structural device, which we call the 'interswitch toggle', that implements frontback communication from the N-terminus to the nucleotide binding site. Here we define the sequence and structural determinants that propagate information across the protein and identify them in all of the Arf family proteins other than Arl6 and Arl4/Arl7. The positions of these determinants lead us to propose that Arf family members with the interswitch toggle device are activated by a bipartite mechanism acting on opposite sides of the protein. The presence of this communication device might provide a more useful basis for unifying Arf homologs as a family than do the cellular functions of these proteins, which are mostly unrelated. We review available genomic sequences and functional data from this perspective, and identify a novel subfamily that we call Arl8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.