Introduction:Eosinophils have been long implicated in antiparasite immunity and allergic diseases and, more recently, in regulating adipose tissue homeostasis. The metabolic processes that govern eosinophils, particularly upon activation, are unknown. Methods:Peripheral blood eosinophils were isolated for the analysis of metabolic processes using extracellular flux analysis and individual metabolites by stable isotope tracer analysis coupled to gas chromatography-mass spectrometry following treatment with IL-3, IL-5 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Eosinophil metabolism was elucidated using pharmacological inhibitors.Results: Human eosinophils engage a largely glycolytic metabolism but also employ mitochondrial metabolism. Cytokine stimulation generates citric acid cycle (TCA) intermediates from both glucose and glutamine revealing this previously unknown role for mitochondria upon eosinophil activation. We further show that the metabolic programme driven by IL-5 is dependent on the STAT5/PI3K/Akt signalling axis and that nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent ROS production might be a driver of mitochondrial metabolism upon eosinophil activation. Conclusion:We demonstrate for the first time that eosinophils are capable of metabolic plasticity, evidenced by increased glucose-derived lactate production upon ROS inhibition.Collectively, this study reveals a role for both glycolysis and mitochondrial metabolism in cytokine-stimulated eosinophils. Selective targeting of eosinophil metabolism may be of therapeutic benefit in eosinophil-mediated diseases and regulation of tissue homeostasis. K E Y W O R D Seosinophils, glycolysis, IL-5, metabolism, TCA cycle
Summary The role of viral infections in adverse pregnancy outcomes has gained interest in recent years. Innate immune pattern recognition receptors (PRRs) and their signalling pathways, that yield a cytokine output in response to pathogenic stimuli, have been postulated to link infection at the maternal–fetal interface and adverse pregnancy outcomes. The objective of this study was to investigate the expression and functional response of nucleic acid ligand responsive Toll‐like receptors (TLR‐3, −7, −8 and −9), and retinoic acid‐inducible gene 1 (RIG‐I)‐like receptors [RIG‐I, melanoma differentiation‐associated protein 5 (MDA5) and Laboratory of Genetics and Physiology 2(LGP2)] in human term gestation‐associated tissues (placenta, choriodecidua and amnion) using an explant model. Immunohistochemistry revealed that these PRRs were expressed by the term placenta, choriodecidua and amnion. A statistically significant increase in interleukin (IL)‐6 and/or IL‐8 production in response to specific agonists for TLR‐3 (Poly(I:C); low and high molecular weight), TLR‐7 (imiquimod), TLR‐8 (ssRNA40) and RIG‐I/MDA5 (Poly(I:C)LyoVec) was observed; there was no response to a TLR‐9 (ODN21798) agonist. A hierarchical clustering approach was used to compare the response of each tissue type to the ligands studied and revealed that the placenta and choriodecidua generate a more similar IL‐8 response, while the choriodecidua and amnion generate a more similar IL‐6 response to nucleic acid ligands. These findings demonstrate that responsiveness via TLR‐3, TLR‐7, TLR‐8 and RIG‐1/MDA5 is a broad feature of human term gestation‐associated tissues with differential responses by tissue that might underpin adverse obstetric outcomes.
Term human gestation-associated tissues express functional NLRs which likely play a role in both sterile and pathogen-driven inflammatory responses at the materno-fetal interface.
IL-1 family members regulate innate immune responses, are produced by gestation-associated tissues, and have a role in healthy and adverse pregnancy outcomes. To better understand their role at the materno-fetal interface we used a human tissue explant model to map lipopolysaccharide (LPS)-stimulated production of IL-1α, IL-1β, IL-18, IL-33, IL-1Ra, IL-18BPa, ST2 and IL-1RAcP by placenta, choriodecidua and amnion. Caspase-dependent processing of IL-1α, IL-1β, IL-18, and IL-33 and the ability of IL-1α, IL-1β, IL-18, and IL-33 to regulate the production of IL-1RA, IL-18BPa, ST2 and IL-1RAcP was also determined. LPS acted as a potent inducer of IL-1 family member expression especially in the placenta and choriodecidua with the response by the amnion restricted to IL-1β. Caspases-1, 4 and 8 contributed to LPS-stimulated production of IL-1β and IL-18, whereas calpain was required for IL-1α production. Exogenous administration of IL-1α, IL-1β, IL-18, and IL-33 lead to differential expression of IL-1Ra, IL-18BPa, ST2 and IL-1RAcP across all tissues examined. Most notable were the counter-regulatory effect of LPS on IL-1β and IL-1Ra in the amnion and the broad responsiveness of the amnion to IL-1 family cytokines for increased production of immunomodulatory peptides and soluble receptors. The placenta and membranes vary not only in their output of various IL-1 family members but also in their counter-regulatory mechanisms through endogenous inhibitory peptides, processing enzymes and soluble decoy receptors. This interactive network of inflammatory mediators likely contributes to innate defence mechanisms at the materno-fetal interface to limit, in particular, the detrimental effects of microbial invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.