This paper proposes a low-profile and highly efficient endfire radiating travelling-wave antenna based on spoof surface plasmon polaritons (SSPPs) transmission line. The aperture is approximately 0.32λ0 × 0.01λ0 where λ0 is the space wavelength at the operational frequency 8 GHz. This antenna provides an endfire radiation beam within 7.5-8.5 GHz. The maximum gain and total efficiency reaches 9.2 dBi and 96%, respectively. In addition to the endfire operation, it also provides a beam scanning functionality within 9-12 GHz. Measurement results are finally given to validate the proposed SSPPs antenna.
This paper presents a highly sensitive closed loop enclosed split ring biosensor operating in microwave frequencies for measuring blood glucose levels in the human body. The proposed microwave glucose biosensor, working on the principle of high field confinement and concentrated energy, has been tested using both in-vitro and in-vivo methods. This principle allows the sensor to concentrate energy at the surface which results in improved accuracy of measurements. For in-vitro measurements, the biosensor has been tested using de-ionized water glucose solutions of different concentrations. The miniaturized micrometer scale biosensor is fabricated over a thin Si-substrate using photolithographic technique. The biosensor has been designed in a way to operate at desired microwave frequencies. Highly confined fields and concentrated energy inside the closed loop line containing the split ring resonators are responsible for the sensitivity enhancement. This new biosensor has obtained a high sensitivity of 82 MHz/mgmL −1 within the clinical diabetic range during in-vivo testing over the human body. In addition, the subjects (undergoing experiments) steady state has been continuously monitored throughout the experiment which helps in improving the accuracy of the results. The proposed biosensor has further obtained a low detection limit of <0.05 wt.% and can be useful for continuous non-invasive blood glucose monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.