Most research in Statistical Learning (SL) has focused on mean success rate of participants in detecting statistical contingencies at a group level. In recent years, however, researchers show increased interest in individual abilities in SL, either to predict other cognitive capacities or as a tool for understanding the mechanism underlying SL. Most, if not all of this research enterprise employs SL tasks that were originally designed for group-level studies. We argue that from an individual difference perspective, such tasks are psychometrically weak and sometimes even flawed. In particular, existing SL tasks have three major shortcomings: (1) the number of trials in the test phase is often too small (or, there is extensive repetitions of the same targets throughout the test), (2) a large proportion of the sample performs at chance level so that most of the data points reflect noise, and (3) test items following familiarization are all of the same type and identical level of difficulty. These factors lead to high measurement error, inevitably resulting in low reliability and thereby doubtful validity. Here we present a novel method specifically designed for the measurement of individual differences in visual SL. The novel task we offer displays substantially superior psychometric properties. We report data regarding the reliability of the task, and discuss the importance of the implementation of such tasks in future research.
One contribution of 13 to a theme issue 'New frontiers for statistical learning in the cognitive sciences'. In recent years, statistical learning (SL) research has seen a growing interest in tracking individual performance in SL tasks, mainly as a predictor of linguistic abilities. We review studies from this line of research and outline three presuppositions underlying the experimental approach they employ: (i) that SL is a unified theoretical construct; (ii) that current SL tasks are interchangeable, and equally valid for assessing SL ability; and (iii) that performance in the standard forced-choice test in the task is a good proxy of SL ability. We argue that these three critical presuppositions are subject to a number of theoretical and empirical issues. First, SL shows patterns of modality-and informationalspecificity, suggesting that SL cannot be treated as a unified construct. Second, different SL tasks may tap into separate sub-components of SL that are not necessarily interchangeable. Third, the commonly used forced-choice tests in most SL tasks are subject to inherent limitations and confounds. As a first step, we offer a methodological approach that explicitly spells out a potential set of different SL dimensions, allowing for better transparency in choosing a specific SL task as a predictor of a given linguistic outcome. We then offer possible methodological solutions for better tracking and measuring SL ability. Taken together, these discussions provide a novel theoretical and methodological approach for assessing individual differences in SL, with clear testable predictions.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.
From a theoretical perspective, most discussions of statistical learning (SL) have focused on the possible "statistical" properties that are the object of learning. Much less attention has been given to defining what "learning" is in the context of "statistical learning." One major difficulty is that SL research has been monitoring participants' performance in laboratory settings with a strikingly narrow set of tasks, where learning is typically assessed offline, through a set of two-alternative-forced-choice questions, which follow a brief visual or auditory familiarization stream. Is that all there is to characterizing SL abilities? Here we adopt a novel perspective for investigating the processing of regularities in the visual modality. By tracking online performance in a self-paced SL paradigm, we focus on the trajectory of learning. In a set of three experiments we show that this paradigm provides a reliable and valid signature of SL performance, and it offers important insights for understanding how statistical regularities are perceived and assimilated in the visual modality. This demonstrates the promise of integrating different operational measures to our theory of SL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.