The aim of this study was to identify genes for hepatic fuel metabolism with a gender-differentiated expression and to determine which of these that might be regulated by the female-specific secretion of GH. Effects of gender and continuous infusion of GH to male rats were studied in the liver using cDNA microarrays representing 3200 genes. Sixty-nine transcripts displayed higher expression levels in females, and 177 displayed higher expression in males. The portion of GH-regulated genes was the same (30%) within the two groups of gender-specific genes. The male liver had a higher expression of genes involved in fuel metabolism, indicating that male rats might have a greater capacity for high metabolic turnover, compared with females. Most notable among the female-predominant transcripts was fatty acid translocase/CD36, with 18-fold higher mRNA levels in the female liver and 4-fold higher mRNA levels in males treated with GH, compared with untreated males. This gender-differentiated expression was confirmed at mRNA and protein levels in the rat and at the mRNA level in human livers. Although purely speculative, it is possible that higher levels of fatty acid translocase/CD36 in human female liver might contribute to the sexually dimorphic development of diseases resulting from or characterized by disturbances in lipid metabolism, such as arteriosclerosis, hyperlipidemia, and insulin resistance.
PPARδ is involved in the inflammatory response and its expression is induced by cytokines, however, limited knowledge has been produced regarding its regulation. Since recent findings have shown that microRNAs, which are small non-coding RNAs that regulate gene expression, are involved in the immune response, we set out to investigate whether PPARδ can be regulated by microRNAs expressed in monocytes. Bioinformatic analysis identified a putative miR-9 target site within the 3′-UTR of PPARδ that was subsequently verified to be functional using reporter constructs. Primary human monocytes stimulated with LPS showed a downregulation of PPARδ and its target genes after 4 h while the expression of miR-9 was induced. Analysis of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages showed that human PPARδ mRNA as well as miR-9 expression was higher in M1 compared to M2 macrophages. Furthermore, treatment with the PPARδ agonist, GW501516, induced the expression of PPARδ target genes in the pro-inflammatory M1 macrophages while no change was observed in the anti-inflammatory M2 macrophages. Taken together, these data suggest that PPARδ is regulated by miR-9 in monocytes and that activation of PPARδ may be of importance in M1 pro-inflammatory but not in M2 anti-inflammatory macrophages in humans.
Background:The amount of intra-thoracic fat, of which mediastinal adipose tissue comprises the major depot, is related to various cardiometabolic risk factors. Autopsy and imaging studies indicate that the mediastinal depot in adult humans could contain brown adipose tissue (BAT). To gain a better understanding of this intra-thoracic fat depot, we examined possible BAT characteristics of human mediastinal in comparison with subcutaneous adipose tissue.Materials and methods:Adipose tissue biopsies from thoracic subcutaneous and mediastinal depots were obtained during open-heart surgery from 33 subjects (26 male, 63.7±13.8 years, body mass index 29.3±5.1 kg m−2). Microarray analysis was performed on 10 patients and genes of interest confirmed by quantitative PCR (qPCR) in samples from another group of 23 patients. Adipocyte size was determined and uncoupling protein 1 (UCP1) protein expression investigated with immunohistochemistry.Results:The microarray data showed that a number of BAT-specific genes had significantly higher expression in the mediastinal depot than in the subcutaneous depot. Higher expression of UCP1 (24-fold, P<0.001) and PPARGC1A (1.7-fold, P=0.0047), and lower expression of SHOX2 (0.12-fold, P<0.001) and HOXC8 (0.14-fold, P<0.001) in the mediastinal depot was confirmed by qPCR. Gene set enrichment analysis identified two gene sets related to mitochondria, which were significantly more highly expressed in the mediastinal than in the subcutaneous depot (P<0.01). No significant changes in UCP1 gene expression were observed in the subcutaneous or mediastinal depots following lowering of body temperature during surgery. UCP1 messenger RNA levels in the mediastinal depot were lower than those in murine BAT and white adipose tissue. In some mediastinal adipose tissue biopsies, a small number of multilocular adipocytes that stained positively for UCP1 were observed. Adipocytes were significantly smaller in the mediastinal than the subcutaneous depot (cross-sectional area 2400±810 versus 3260±980 μm2, P<0.001).Conclusions:Human mediastinal adipose tissue displays some characteristics of BAT when compared with the subcutaneous depot at microscopic and molecular levels.
BackgroundGenes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from in situ perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections.ResultsOut of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions.ConclusionsTaken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.