Hypertension causes cardiac hypertrophy characterized by low-grade inflammation. Toll-like receptors (TLRs), members of the innate immune system, contribute to cardiac failure. We hypothesized that hypertension is accompanied by enhanced TLR4 expression and activity. Cardiac TLR4 expression was determined in untreated spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY;4,8, 16 weeks). Besides, hearts of 8-week-old rats were stimulated with the endogenous TLR4 ligand heparansulfate (HS); the proinflammatory mRNA pattern was assessed (tumor necrosis factor-a (TNF-a), interleukin (IL)-6, monocyte chemotactic protein (MCP)-1). Additionally, we induced hypertension in WKY by L-NAME (N x -nitro-L-argininemethylester hydrochloride). In both hypertension models the effect of ramipril on TLR4 density was assessed. Cardiac TLR4 distribution was investigated by fluorescence-activated cell sorting analysis. Blood pressure (BP) and heart weight/body weight ratio (HW/BW) were elevated in SHR. Constitutive TLR4 expression was augmented in adolescent and adult, but not young SHR compared with WKY. TLR4 staining was pronounced in cardiomyocytes. HS entailed an aggravated TNF-a and IL-6 mRNA response in cardiac tissue, which was significantly pronounced in SHR. Ramipril (10 mg kg À1 per day) reduced BP, HW/BW and TLR4 expression in SHR. L-NAME also augmented TLR4 expression in WKY. Ramipril (1 mg kg À1 per day) lowered BP but TLR4 expression remained unaffected. High-dose ramipril (10 mg kg À1 per day) however decreased TLR4 expression. Starting from adolescence SHR demonstrated enhanced cardiac TLR4 expression. TLR4 was also upregulated in L-NAME induced hypertension. Thus, enhanced TLR4 expression might be linked to the development and maintenance of hypertension. Finally, the antihypertensive, anti-inflammatory action of angiotensin-converting-enzyme inhibition had no effect on TLR4 expression in therapeutic doses but in a high-dose model.
ObjectiveDespite substantial progress in recent years, graft survival beyond the first year still requires improvement. Since modern immunosuppression addresses mainly T-cell activation and proliferation, we studied macrophage infiltration into the allografts of 103 kidney transplant recipients during acute antibody and T-cell mediated rejection. Macrophage infiltration was correlated with both graft function and graft survival until month 36 after transplantation.ResultsMacrophage infiltration was significantly elevated in antibody-mediated and T-cell mediated rejection, but not in kidneys with established IFTA. Treatment of rejection with steroids was less successful in patients with more prominent macrophage infiltration into the allografts. Macrophage infiltration was accompanied by increased cell proliferation as well as antigen presentation. With regard to the compartmental distribution severity of T-cell-mediated rejection was correlated to the amount of CD68+ cells especially in the peritubular and perivascular compartment, whereas biopsies with ABMR showed mainly peritubular CD68 infiltration. Furthermore, severity of macrophage infiltration was a valid predictor of resulting creatinine values two weeks as well as two and three years after renal transplantation as illustrated by multivariate analysis. Additionally performed ROC curve analysis showed that magnitude of macrophage infiltration (below vs. above the median) was a valid predictor for the necessity to restart dialysis. Having additionally stratified biopsies in accordance to the magnitude of macrophage infiltration, differential CD68+ cell infiltration was reflected by striking differences in overall graft survival.ConclusionThe differences in acute allograft rejection have not only been reflected by different magnitudes of macrophage infiltration, but also by compartment-specific infiltration pattern and subsequent impact on resulting allograft function as well as need for dialysis initiation. There is a robust relationship between macrophage infiltration, accompanying antigen-presentation and resulting allograft function.
BackgroundNon-adherence has been associated with reduced graft survival. The aim of this study was to investigate the immunological mechanisms underlying chronic renal allograft rejection using a model of non-adherence to immunosuppressive therapy. We used a MHC (major histocompatibility complex) -mismatched rat model of renal transplantation (Brown Norway to Lewis), in which rats received daily oral cyclosporine A. In analogy to non-adherence to therapy, one group received cyclosporine A on alternating days only. Rejection was histologically graded according to the Banff classification. We quantified fibrosis by trichrome staining and intra-graft infiltration of T cells, B cells, and monocytes/macrophages by immunohistochemistry. The distribution of B lymphocytes was assessed using immunofluorescence microscopy. Intra-graft chemokine, chemokine receptor, BAFF (B cell activating factor belonging to the TNF family), and immunoglobulin G transcription levels were analysed by RT-PCR. Finally, we evaluated donor-specific antibodies (DSA) and complement-dependent cytotoxicity using flow cytometry.ResultsAfter 28 days, cellular rejection occurred during non-adherence in 5/6 animals, mixed with humoral rejection in 3/6 animals. After non-adherence, the number of T lymphocytes were elevated compared to daily immunosuppression. Monocyte numbers declined over time. Accordingly, lymphocyte chemokine transcription was significantly increased in the graft, as was the transcription of BAFF, BAFF receptor, and Immunoglobulin G. Donor specific antibodies were elevated in non-adherence, but did not induce complement-dependent cytotoxicity.ConclusionCellular and humoral rejection, lymphocyte infiltration, and de novo DSA are induced in this model of non-adherence.Electronic supplementary materialThe online version of this article (doi: 10.1186/s12865-017-0236-6) contains supplementary material, which is available to authorized users.
The redox-active chlorite-based drug WF10 (Immunokine) was shown to have modulatory effects on both the innate and adaptive immune system in vitro and in vivo. Animal studies suggest that WF10 enhances immunity against tumors. One possible explanation for such an effect is that WF10 stimulates natural killer cell cytotoxicity against malignant cells. Here, we show that WF10 regulates human NK cell cytotoxicity in a time-dependent manner, following an S-shaped kinetic with an initial stimulation of activity followed by a decrease in activity relative to the untreated controls. WF10 does not activate NK cells on its own but co-stimulates NK cell activation mediated by different activating receptors. This is mediated by enhancing NK cell adhesion to target cells through promoting the activation of the integrin LFA-1. These data demonstrate a direct effect of WF10 on the cytotoxicity of human NK cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.