The enzyme vitamin K1 2,3 epoxide reductase is responsible for converting vitamin K1 2,3 epoxide to vitamin K1 quinone thus completing the vitamin K cycle. The enzyme is also the target of inhibition by the oral anticoagulant, R,S-warfarin. Purification of this protein would enable the interaction of the inhibitor with its target to be elucidated. To date a single protein possessing vitamin K1 2,3 epoxide reductase activity and binding R,S-warfarin has yet to be purified to homogeneity, but recent studies have indicated that the enzyme is in fact at least two interacting proteins. We report on the attempted purification of the vitamin K1 2,3 epoxide reductase complex from rat liver microsomes by ion exchange and size exclusion chromatography techniques. The intact system consisted of a warfarin-binding factor, which possessed no vitamin K1 2,3 epoxide reductase activity and a catalytic protein. This catalytic protein was purified 327-fold and was insensitive to R,S-warfarin inhibition at concentrations up to 5 mM. The addition of the S-200 size exclusion chromatography fraction containing the inhibitor-binding factor resulted in the return of R,S-warfarin inhibition. Thus, to function normally, the rat liver endoplasmic reticulum vitamin K1 2,3 epoxide reductase system requires the association of two components, one with catalytic activity for the conversion of the epoxide to the quinone and the second, the inhibitor binding factor. This latter enzyme forms the thiol-disulphide redox centre that in the oxidized form binds R,S-warfarin.
Biochemical Society Transactions (1 999) 27 A1 29 143 Lyn tyrosyl b a s e binds to the human CAMP-specific phosphodiesterase pde46 (HSPDUA4B) and causes a conformational change in its catalytic unit 9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.