The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.
Recent genetic studies have identified variants associated with bipolar disorder (BD), but it remains unclear how brain gene expression is altered in BD, and how genetic risk for BD may contribute to these alterations. Here, we obtained transcriptomes from subgenual anterior cingulate cortex and amygdala samples from post-mortem brains of individuals with BD and neurotypical controls, including 511 total samples from 295 unique donors. We examined differential gene expression between cases and controls, and the transcriptional effects of BD-associated genetic variants. We found two co-expressed modules that were associated with transcriptional changes in BD: one enriched for immune and inflammatory genes and the other with genes related to the post-synaptic membrane. Over 50% of BD genome-wide significant loci contained significant expression quantitative trait loci (eQTLs), and these data converged on several individual genes, including
SCN2A
and
GRIN2A
. Thus, these data implicate specific genes and pathways that may contribute to the pathology of bipolar disorder.
Next-generation sequencing technologies have facilitated data-driven identification of gene sets with different features including genes with stable expression, cell-type specific expression, or spatially variable expression. Here, we aimed to define and identify a new class of “control” genes called Total RNA Expression Genes (TREGs), which correlate with total RNA abundance in heterogeneous cell types of different sizes and transcriptional activity. We provide a data-driven method to identify TREGs from single cell RNA-sequencing (RNA-seq) data, available as an R/Bioconductor package at https://bioconductor.org/packages/TREG. We demonstrated the utility of our method in the postmortem human brain using multiplex single molecule fluorescent in situ hybridization (smFISH) and compared candidate TREGs against classic housekeeping genes. We identified AKT3 as a top TREG across five brain regions, especially in the dorsolateral prefrontal cortex.
Ancestral differences in genomic variation are determining factors in gene regulation; however, most gene expression studies have been limited to European ancestry samples or adjusted for ancestry to identify ancestry-independent associations. We instead examined the impact of genetic ancestry on gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are enriched for genes related to immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson’s disease, and 30% of heritability for Alzhemier’s disease. Ancestry-associated DEGs also show general enrichment for heritability of diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating environmental exposures. We also compared Black and White Americans, confirming most of these ancestry-associated DEGs. Our results highlight how environment and genetic background affect genetic ancestry differences in gene expression in the human brain and affect risk for brain illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.