Glucagon-like peptide 1 (GLP1) is postulated to regulate blood glucose and satiety, but the biological importance of GLP1 as an incretin and neuropeptide remains controversal. The regulation of nutrient-induced insulin secretion is dependent on the secretion of incretins, gut-derived peptides that potentiate insulin secretion from the pancreatic islets. To ascertain the relative physiological importance of GLP1 as a regulator of feeding behavior and insulin secretion, we have generated mice with a targeted disruption of the GLP1 receptor gene (GLP1R). These GLP1R-/- mice are viable, develop normally but exhibit increased levels of blood glucose following oral glucose challenge in association with diminished levels of circulating insulin. It is surprising that they also exhibit abnormal levels of blood glucose following intraperitoneal glucose challenge. Intracerebroventricular administration of GLP1 inhibited feeding in wild-type mice but not in GLP1R-/- mice; however, no evidence for abnormal body weight or feeding behavior was observed in GLP1R-/- mice. These observations demonstrate that GLP1 plays a central role in the regulation of glycemia; however, disruption of GLP1/GLP1R signaling in the central nervous system is not associated with perturbation of feeding behavior or obesity in vivo.
Late-stage neuropathological hallmarks of Alzheimer's disease (AD) are β-amyloid (βA) and hyperphosphorylated tau peptides, aggregated into plaques and tangles, respectively. Corresponding phenotypes have been mimicked in existing transgenic mice, however, the translational value of aggressive over-expression has recently been questioned. As controlled gene expression may offer animal models with better predictive validity, we set out to design a transgenic mouse model that circumvents complications arising from pronuclear injection and massive over-expression, by targeted insertion of human mutated amyloid and tau transgenes, under the forebrain- and neurone-specific CaMKIIα promoter, termed PLB1Double. Crossing with an existing presenilin 1 line resulted in PLB1Triple mice. PLB1Triple mice presented with stable gene expression and age-related pathology of intra-neuronal amyloid and hyperphosphorylated tau in hippocampus and cortex from 6 months onwards. At this early stage, pre-clinical 18FDG PET/CT imaging revealed cortical hypometabolism with increased metabolic activity in basal forebrain and ventral midbrain. Quantitative EEG analyses yielded heightened delta power during wakefulness and REM sleep, and time in wakefulness was already reliably enhanced at 6 months of age. These anomalies were paralleled by impairments in long-term and short-term hippocampal plasticity and preceded cognitive deficits in recognition memory, spatial learning, and sleep fragmentation all emerging at ∼12 months. These data suggest that prodromal AD phenotypes can be successfully modelled in transgenic mice devoid of fibrillary plaque or tangle development. PLB1Triple mice progress from a mild (MCI-like) state to a more comprehensive AD-relevant phenotype, which are accessible using translational tools such as wireless EEG and microPET/CT.
Incretins are gastrointestinal hormones that act on the pancreas to potentiate glucose-stimulated insulin secretion. Despite the physiological importance of the enteroinsular axis, disruption of glucagon-like peptide (GLP)-1 action is associated with only modest glucose intolerance in GLP-1 receptor -/- (GLP-1R -/-) mice. We show here that GLP-1R -/- mice exhibit compensatory changes in the enteroinsular axis via increased glucose-dependent insulinotropic polypeptide (GIP) secretion and enhanced GIP action. Serum GIP levels in GLP-1R -/- mice were significantly elevated versus those in +/+ control mice after an oral glucose tolerance test (369 +/- 40 vs. 236 +/- 28 pmol/l; P < or = 0.02). Furthermore, GIP perfusion of mice pancreas and isolated islets in the presence of elevated glucose concentrations elicited a significantly greater insulin response in GLP-1R -/- than in +/+ mice (P < or = 0.02-0.05). In contrast, no significant perturbation in the insulin response to perfused glucagon was detected under conditions of low (4.4 mmol/l) or high (16.6 mmol/l) glucose in GLP-1R -/- mice. Total pancreatic insulin but not glucagon content was significantly reduced in GLP-1R -/- compared with in +/+ mice (77 +/- 9 vs. 121 +/- 10 pmol/mg protein; P < or = 0.005). These observations suggest that upregulation of the GIP component of the enteroinsular axis, at the levels of GIP secretion and action, modifies the phenotype resulting from interruption of the insulinotropic activity of GLP-1 in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.