Blood coagulation can be initiated when factor VII or VIIa, a plasma protease, binds to its essential cofactor, tissue factor (TF), and proteolytically activates factors IX and X, triggering a cascade of events which eventually leads to the formation of thrombin and a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits activated factor X (Xa) directly and, in a Xa-dependent way, inhibits VII(a)/TF activity, presumably by forming a quaternary Xa/LACI/VII(a)/TF complex. Sequence analysis of complementary DNA clones has shown that LACI contains three tandemly repeated Kunitz-type serine protease inhibitory domains. To investigate the relationship between these Kunitz structures and LACI function, we have used site-directed mutagenesis to produce altered forms of LACI in which the residue at the active-site cleft of each Kunitz domain has been individually changed. The second Kunitz domain is required for efficient binding and inhibition of Xa, and both Kunitz domains 1 and 2 are required for the inhibition of VIIa/TF activity; but alteration of the active-site residue of the third Kunitz domain has no significant effect on either function. We propose that in the putative inhibitory complex, Kunitz domain 1 is bound to the active site of VII(a)/TF and that Kunitz domain 2 is bound to Xa's active site.
Blood coagulation is initiated when plasma factor VII(a) binds to its essential cofactor tissue factor (TF) and proteolytically activates factors X and IX. Progressive inhibition of TF activity occurs upon its addition to plasma. This process is reversible and requires the presence of VII(a), catalytically active Xa, Ca2+, and another component that appears to be associated with the lipoproteins in plasma, a lipoprotein-associated coagulation inhibitor (LACI). A protein, LACI(HG2), possessing the same inhibitory properties as LACI, has recently been isolated from the conditioned media of cultured human liver cells (HepG2). Rabbit antisera raised against a synthetic peptide based on the N-terminal sequence of LACI(HG2) and purified IgG from a rabbit immunized with intact LACI(HG2) inhibit the LACI activity in human serum. In a reaction mixture containing VIIa, Xa, Ca2+, and purified LACI(HG2), the apparent half-life (t1/2) for TF activity was 20 seconds. The presence of heparin accelerated the initial rate of inhibition threefold. Antithrombin III alpha alone had no effect, but antithrombin III alpha with heparin abrogated the TF inhibition. LACI(HG2) also inhibited Xa with an apparent t1/2 of 50 seconds. Heparin enhanced the rate of Xa inhibition 2.5-fold, whereas phospholipids and Ca2+ slowed the reaction 2.5-fold. Xa inhibition was demonstrable with both chromogenic substrate (S-2222) and bioassays, but no complex between Xa and LACI(HG2) could be visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Nondenaturing PAGE, however, showed that LACI(HG2) bound to Xa but not to X or Xa inactivated by diisopropyl fluorophosphate. Thus, LACI(HG2) appears to bind to Xa at or near its active site. Bovine factor Xa lacking its gamma-carboxyglutamic acid-containing domain, BXa(-GD), through treatment with alpha-chymotrypsin, was used to further investigate the Xa requirement for VIIa/TF inhibition by LACI(HG2). LACI(HG2) bound to BXa(-GD) and inhibited its catalytic activity against a small molecular substrate (Spectrozyme Xa), though at a rate approximately sevenfold slower than native BXa. Preincubation of LACI(HG2) with saturating concentrations of BXa(-GD) markedly retarded the subsequent inhibition of BXa. The VII(a)/TF complex was not inhibited by LACI(HG2) in the presence of BXa(-GD), and further, preincubation of LACI(HG2) with BXa(-GD) slowed the inhibition of VIIa/TF after the addition of native Xa. The results are consistent with the hypothesis that inhibition of VII(a)/TF involves the formation of a VIIa-TF-XA-LACI complex that requires the GD of XA.(ABSTRACT TRUNCATED AT 400 WORDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.