SummaryBackgroundThe achievement of glycaemic control remains challenging for patients with type 1 diabetes. We assessed the effectiveness of day-and-night hybrid closed-loop insulin delivery compared with sensor-augmented pump therapy in people with suboptimally controlled type 1 diabetes aged 6 years and older.MethodsIn this open-label, multicentre, multinational, single-period, parallel randomised controlled trial, participants were recruited from diabetes outpatient clinics at four hospitals in the UK and two centres in the USA. We randomly assigned participants with type 1 diabetes aged 6 years and older treated with insulin pump and with suboptimal glycaemic control (glycated haemoglobin [HbA1c] 7·5–10·0%) to receive either hybrid closed-loop therapy or sensor-augmented pump therapy over 12 weeks of free living. Training on study insulin pump and continuous glucose monitoring took place over a 4-week run-in period. Eligible subjects were randomly assigned using central randomisation software. Allocation to the two study groups was unblinded, and randomisation was stratified within centre by low (<8·5%) or high (≥8·5%) HbA1c. The primary endpoint was the proportion of time that glucose concentration was within the target range of 3·9–10·0 mmol/L at 12 weeks post randomisation. Analyses of primary outcome and safety measures were done in all randomised patients. The trial is registered with ClinicalTrials.gov, number NCT02523131, and is closed to accrual.FindingsFrom May 12, 2016, to Nov 17, 2017, 114 individuals were screened, and 86 eligible patients were randomly assigned to receive hybrid closed-loop therapy (n=46) or sensor-augmented pump therapy (n=40; control group). The proportion of time that glucose concentration was within the target range was significantly higher in the closed-loop group (65%, SD 8) compared with the control group (54%, SD 9; mean difference in change 10·8 percentage points, 95% CI 8·2 to 13·5; p<0·0001). In the closed-loop group, HbA1c was reduced from a screening value of 8·3% (SD 0·6) to 8·0% (SD 0·6) after the 4-week run-in, and to 7·4% (SD 0·6) after the 12-week intervention period. In the control group, the HbA1c values were 8·2% (SD 0·5) at screening, 7·8% (SD 0·6) after run-in, and 7·7% (SD 0·5) after intervention; reductions in HbA1c percentages were significantly greater in the closed-loop group compared with the control group (mean difference in change 0·36%, 95% CI 0·19 to 0·53; p<0·0001). The time spent with glucose concentrations below 3·9 mmol/L (mean difference in change −0·83 percentage points, −1·40 to −0·16; p=0·0013) and above 10·0 mmol/L (mean difference in change −10·3 percentage points, −13·2 to −7·5; p<0·0001) was shorter in the closed-loop group than the control group. The coefficient of variation of sensor-measured glucose was not different between interventions (mean difference in change −0·4%, 95% CI −1·4% to 0·7%; p=0·50). Similarly, total daily insulin dose was not different (mean difference in change 0·031 U/kg per day, 95% CI −0·005 to 0·067; p=0·09...
SummaryPPARγ is essential for adipogenesis and metabolic homeostasis. We describe mutations in the DNA and ligand binding domains of human PPARγ in lipodystrophic, severe insulin resistance. These receptor mutants lack DNA binding and transcriptional activity but can translocate to the nucleus, interact with PPARγ coactivators and inhibit coexpressed wild-type receptor. Expression of PPARγ target genes is markedly attenuated in mutation-containing versus receptor haploinsufficent primary cells, indicating that such dominant-negative inhibition operates in vivo. Our observations suggest that these mutants restrict wild-type PPARγ action via a non-DNA binding, transcriptional interference mechanism, which may involve sequestration of functionally limiting coactivators.
Key points• Exosomes are vesicles that are released from the kidney into the urine. They contain RNA and protein from the cell of origin and can track changes in renal physiology non-invasively.• Current methods for the identification and quantification of urinary exosomes are time consuming and only semi-quantitative.• In this study, we applied nanoparticle tracking analysis to human urine and identified particles with a range of sizes, including a subpopulation of characteristic exosomal size that labelled positively with antibodies to exosome proteins. • Nanoparticle tracking analysis was able to track an increase in exosomal aquaporin 2 concentration following desmopressin treatment of a kidney cell line, a rodent model and a patient with central diabetes insipidus.• With appropriate sample storage, nanoparticle tracking analysis has potential as a tool for the rapid characterization and quantification of exosomes in human urine. This new method can be used to develop urinary extracellular vesicles further as a non-invasive tool for investigating human renal physiology.Abstract Exosomes are vesicles that are released from the kidney into urine. They contain protein and RNA from the glomerulus and all sections of the nephron and represent a reservoir for biomarker discovery. Current methods for the identification and quantification of urinary exosomes are time consuming and only semi-quantitative. Nanoparticle tracking analysis (NTA) counts and sizes particles by measuring their Brownian motion in solution.In this study, we applied NTA to human urine and identified particles with a range of sizes. Using antibodies against the exosomal proteins CD24 and aquaporin 2 (AQP2), conjugated to a fluorophore, we could identify a subpopulation of CD24-and AQP2-positive particles of characteristic exosomal size. Extensive pre-NTA processing of urine was not necessary. However, the intra-assay variability in the measurement of exosome concentration was significantly reduced when an ultracentrifugation step preceded NTA. Without any sample processing, NTA tracked exosomal AQP2 upregulation induced by desmopressin stimulation of kidney collecting duct cells. Nanoparticle tracking analysis was also able to track changes in exosomal AQP2 concentration that followed desmopressin treatment of mice and a patient with central diabetes insipidus. When urine was stored at room temperature, 4• C or frozen, nanoparticle concentration was reduced; freezing at −80• C with the addition of protease inhibitors produced the least reduction. In conclusion, with appropriate sample storage, NTA has potential as a tool for the characterization and quantification of extracellular vesicles in human urine.
Objective To study the effect of total body irradiation (14.4 Gray) in childhood and adolescence on ovarian and uterine characteristics, and to investigate the response to physiological sex steroid serum concentrations.Design All long term post-pubertal female survivors of total body irradiation who had been treated in paediatric centres in Scotland were identified. Their ovarian and uterine characteristics were studied.Setting Recruitment was from follow up oncology clinics.Sample Nine women were identified, eight of whom were assessed and five progressed to detailed investigation. A control population of 12 women treated for acute leukaemia, but not treated with total body irradiation, and five healthy women with no history of childhood malignancy were recruited as controls.Methods Ovarian function was determined by measurement of serum gonadotrophins and sex steroids. Uterine response to physiological sex steroid replacement was investigated in women with ovarian failure, and to endogenous sex steroid production in women with ovarian function by ultrasound scan. The physiological sex steroid replacement was achieved with transdermal oestradiol patches and self administered vaginal progesterone pessaries. Main outcome measuresDetermination of ovarian function and uterine response to physiological sex steroid serum concentrations.Results Six of eight women treated with total body irradiation had ovarian failure; preservation of function was seen in two girls treated pre-pubertally who had biochemical evidence of incipient ovarian failure. Four women with ovarian failure had reduced uterine volume, undetectable blood supply and absent endometrium at baseline assessment; after three months of physiological sex steroid replacement treatment uterine blood supply and endometrial response were not significantly different from controls; uterine volume improved but remained significantly smaller than controls and correlated with age at total body irradiation.Conclusions Ovarian failure after total body irradiation is common and risk relates to age at treatment. Physiological sex steroid replacement improved uterine measures and these women may benefit from assisted reproductive technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.