Hot-carrier solar cells require absorber materials with restricted carrier thermalization pathways, in order to slow the rate of heat energy dissipation from the carrier population to the lattice, relative to the rate of carrier extraction. Absorber suitability can be characterized in terms of carrier thermalization coefficient (Q). Materials with lower Q generate steady-state hot-carrier populations at lower levels of incident solar power and, therefore, are better able to perform as hot-carrier absorbers. In this study, we evaluate Q = 2.5±0.2 W · K −1 · cm −2 for a In 0 .52 AlAs/In 0 .53 GaAs single-quantum-well(QW) heterostructure using photoluminescence spectroscopy. This is the lowest experimentally determined Q value for any material system studied to date. Hot-carrier solar cell simulations, using this material as an absorber yield efficiency ∼39% at 2000X, which corresponds to a >5% enhancement over an equivalent single-junction thermal equilibrium device.Index Terms-Hot-carrier solar cell (HCSC), InGaAs, InP, thermalization coefficient, quantum well (QW).
Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in Voc with increasing fluence; however, the 80 nm cell showed no degradation in Isc for fluences up to 1014 p+ cm−2. For the same exposure, the Isc of the 800 nm cell had severely degraded leaving a remaining factor of 0.26.
An unambiguous observation of hot-carrier photocurrent from an InGaAs single quantum well solar cell is reported. Simultaneous photo-current and photoluminescence measurements were performed for incident power density 0.04–3 kW cm−2, lattice temperature 10 K, and forward bias 1.2 V. An order of magnitude photocurrent increase was observed for non-equilibrium hot-carrier temperatures >35 K. This photocurrent activation temperature is consistent with that of equilibrium carriers in a lattice at elevated temperature. The observed hot-carrier photo-current is extracted from the well over an energy selective GaAs barrier, thus integrating two essential components of a hot-carrier solar cell: a hot-carrier absorber and an energy selective contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.