An awareness of the importance of nutritional status in hospital settings began more than 40 years ago. Much has been learned since and has altered care. For the past 40 years several large studies have shown that cancer patients are amongst the most malnourished of all patient groups. Recently, the use of gold-standard methods of body composition assessment, including computed tomography, has facilitated the understanding of the true prevalence of cancer cachexia (CC). CC remains a devastating syndrome affecting 50-80 % of cancer patients and it is responsible for the death of at least 20 %. The aetiology is multifactorial and complex; driven by pro-inflammatory cytokines and specific tumour-derived factors, which initiate an energy-intensive acute phase protein response and drive the loss of skeletal muscle even in the presence of adequate food intake and insulin. The most clinically relevant phenotypic feature of CC is muscle loss (sarcopenia), as this relates to asthenia, fatigue, impaired physical function, reduced tolerance to treatments, impaired quality of life and reduced survival. Sarcopenia is present in 20-70 % depending on the tumour type. There is mounting evidence that sarcopenia increases the risk of toxicity to many chemotherapy drugs. However, identification of patients with muscle loss has become increasingly difficult as 40-60 % of cancer patients are overweight or obese, even in the setting of metastatic disease. Further challenges exist in trying to reverse CC and sarcopenia. Future clinical trials investigating dose reductions in sarcopenic patients and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.
Background:Body composition is an important predictor of drug toxicity and outcome. Ipilimumab (Ipi), a monoclonal antibody used to treat metastatic melanoma, has specific toxicities. No validated biomarkers that predict Ipi toxicity and efficacy exist. Also, the impact of Ipi on body composition has not been established.Methods:Patients with metastatic melanoma treated with Ipi between 2009 and 2015 were included. Body composition was assessed by computed tomography at baseline and after four cycles of Ipi. Sarcopenia and low muscle attenuation (MA) were defined using published cut-points. All adverse events (AEs) and immune-related AEs (irAEs) were recorded (Common Terminology Criteria For Adverse Event V.4.0).Results:Eighty-four patients were included in this study (62% male, median age 54 years). At baseline, 24% were sarcopenic and 33% had low MA. On multivariate analysis, sarcopenia and low MA were significantly associated with high-grade AEs (OR=5.34, 95% CI: 1.15–24.88, P=0.033; OR=5.23, 95% CI: 1.41–19.30, P=0.013, respectively), and low MA was associated with high-grade irAEs (OR=3.57, 95% CI: 1.09–11.77, P=0.036). Longitudinal analysis (n=59) revealed significant reductions in skeletal muscle area (SMA), total body fat-free mass, fat mass (all P<0.001) and MA (P=0.030). Mean reduction in SMA was 3.3%/100 days (95% CI: −4.48 to −1.79%, P<0.001). A loss of SMA ⩾7.5%/100 days (highest quartile) was a significant predictor of overall survival in multivariable Cox regression analysis (HR: 2.1, 95% CI: 1.02–4.56, P=0.046).Conclusions:Patients with sarcopenia and low MA are more likely to experience severe treatment-related toxicity to Ipi. Loss of muscle during treatment was predictive of worse survival. Treatments to increase muscle mass and influence outcome warrant further investigation.
BackgroundMalnutrition, weight loss, and muscle wasting are common in patients with foregut cancers (oesophagus, stomach, pancreas, liver, and bile ducts) and are associated with adverse clinical outcomes. However, little is known about the changes in body composition that occur in these patients during chemotherapy and its impacts clinical outcomes.Patients and methodsA prospective study of adult foregut cancer patients undergoing chemotherapy between 2012 and 2016 was conducted. Computed tomography images were evaluated for cross‐sectional skeletal muscle area (SMA) and adipose tissue area (ATA) at two time points [interval 118 days (IQR 92–58 days)]. Longitudinal changes in SMA and ATA were examined using paired t‐tests. Sarcopenia and low muscle attenuation (MA) were defined using published cut‐points. Cox proportional hazards models were used to estimate mortality hazard ratios for key predictors.ResultsA total of 225 foregut cancer patients were included (67% male, median age 66 years). At baseline, 40% were sarcopenic, 49% had low MA, and 62% had cancer cachexia. Longitudinal analysis (n = 163) revealed significant reductions in SMA [−6.1 cm2 (3.9%)/100 days, P < 0.001]. Patients treated with neoadjuvant chemotherapy experienced greater losses in SMA and skeletal muscle mass compared with patients receiving palliative chemotherapy [−6.6 cm2 (95%, confidence interval, CI: −10.2 to −3.1), P < 0.001 and −1.2 kg (95% CI: −1.8 to −0.5), P < 0.001, respectively]. Neither sarcopenia nor low MA at baseline was associated with reduced survival. A loss of SMA >6.0%/100 days (highest fourth) independently predicted overall survival in patients receiving palliative chemotherapy [hazard ratio: 2.66, (95% CI: 1.42 to 4.97), P = 0.002].ConclusionsPatients with foregut cancers, particularly those treated with neoadjuvant chemotherapy, experience significant losses of muscle during chemotherapy. A high level of SMA loss is prognostic of reduced survival in patients treated with palliative chemotherapy. Multimodal interventions to stabilize or increase muscle mass and influence outcome warrant further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.