Genetic studies have shown that retinoic acid (RA) signaling is required for mouse retina development, controlled in part by an RA-generating aldehyde dehydrogenase encoded by Aldh1a2 (Raldh2) expressed transiently in the optic vesicles. We examined the function of a related gene, Aldh1a1 (Raldh1), expressed throughout development in the dorsal retina. Raldh1 ؊/؊ mice are viable and exhibit apparently normal retinal morphology despite a complete absence of Raldh1 protein in the dorsal neural retina. RA signaling in the optic cup, detected by using a RARE-lacZ transgene, is not significantly altered in Raldh1 ؊/؊ embryos at embryonic day 10.5, possibly due to normal expression of Aldh1a3 (Raldh3) in dorsal retinal pigment epithelium and ventral neural retina. However, at E16.5 when Raldh3 is expressed ventrally but not dorsally, Raldh1 embryos lack RARE-lacZ expression in the dorsal retina and its retinocollicular axonal projections, whereas normal RARE-lacZ expression is detected in the ventral retina and its axonal projections. Retrograde labeling of adult Raldh1؊/؊ retinal ganglion cells indicated that dorsal retinal axons project to the superior colliculus, and electroretinography revealed no defect of adult visual function, suggesting that dorsal RA signaling is unnecessary for retinal ganglion cell axonal outgrowth. We observed that RA synthesis in liver of Raldh1 ؊/؊ mice was greatly reduced, thus showing that Raldh1 indeed participates in RA synthesis in vivo. Our findings suggest that RA signaling may be necessary only during early stages of retina development and that if RA synthesis is needed in dorsal retina, it is catalyzed by multiple enzymes, including Raldh1.
Tumor angiogenesis is a key event in cancer progression. Here, we report that tumors can stimulate tumor angiogenesis by secretion of galectin-1. Tumor growth and tumor angiogenesis of different tumor models are hampered in galectin-1-null (gal-1 −/− ) mice. However, tumor angiogenesis is less affected when tumor cells express and secrete high levels of galectin-1. Furthermore, tumor endothelial cells in gal-1 −/− mice take up galectin-1 that is secreted by tumor cells. Uptake of galectin-1 by cultured endothelial cells specifically promotes H-Ras signaling to the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) kinase (Mek)/Erk cascade and stimulates endothelial cell proliferation and migration. Moreover, the activation can be blocked by galectin-1 inhibition as evidenced by hampered membrane translocation of H-Ras.GTP and impaired Raf/Mek/Erk phosphorylation after treatment with the galectin-1-targeting angiogenesis inhibitor anginex. Altogether, these data identify galectin-1 as a proangiogenic factor. These findings have direct implications for current efforts on galectin-1-targeted cancer therapies. Cancer Res; 70(15); 6216-24. ©2010 AACR.
Two mouse insulin genes, Ins1 and Ins2, were disrupted and lacZ was inserted at the Ins2 locus by gene targeting. Double nullizygous insulin-deficient pups were growth-retarded. They did not show any glycosuria at birth but soon after suckling developed diabetes mellitus with ketoacidosis and liver steatosis and died within 48 h. Interestingly, insulin deficiency did not preclude pancreas organogenesis and the appearance of the various cell types of the endocrine pancreas. The presence of lacZ expressing  cells and glucagon-positive ␣ cells was demonstrated by cytochemistry and immunocytochemistry. Reverse transcriptioncoupled PCR analysis showed that somatostatin and pancreatic polypeptide mRNAs were present, although at reduced levels, accounting for the presence also of ␦ and pancreatic polypeptide cells, respectively. Morphometric analysis revealed enlarged islets of Langherans in the pancreas from insulin-deficient pups, suggesting that insulin might function as a negative regulator of islet cell growth. Whether insulin controls the growth of specific islet cell types and the molecular basis for this action remain to be elucidated.Insulin is synthesized, stored, and secreted by the pancreatic islet  cells in a highly regulated manner and plays a vital role in glucose homeostasis. Insulin action also results in several other pleiotropic effects that are less well documented. Embryonic insulin synthesis begins early in gestation, but fetal glycemia closely follows maternal blood glucose levels. The question, therefore, arises as to what function embryonic insulin might fulfill during development. For instance, one might ask whether insulin plays an autocrine or paracrine role in pancreatic islet cell growth and differentiation, since insulin is synthesized with other hormones in developing islet cell types (1-3). Recently, this question has been addressed in a few transgenic studies. For instance, the gene encoding PDX-1 (4, 5), a homeodomain transcription factor synthesized in adult  cells and capable of transactivating insulin gene expression, has been inactivated by targeted disruption (6, 7). Agenesis of pancreas resulting from PDX-1 deficiency precluded from addressing the question of the possible role of insulin in islet cell growth and differentiation. Similarly, mice lacking the LIM homeodomain transcription factor ISL1, synthesized in all classes of islet cells in the adult, were arrested in development soon after embryonic day 9.5 (8). The requirement of ISL1 in pancreatic epithelium for the differentiation of all islet cell types was, however, demonstrated by in vitro culture of explants from ISL1-deficient embryonic day 9.5 embryos that gave rise to cells that were negative for glucagon, insulin, and somatostatin. In another study, transgenic mouse embryos expressing the gene encoding the diphteria toxin A chain under control of the rat Ins2 promoter were generated (9). The resulting genetic ablation of the insulin-producing cells did not appear to alter the development of the nontarget...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.