Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ⌬prrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ⌬prrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence. Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium and versatile opportunistic pathogen. Iron is required for P. aeruginosa virulence (1-6) and is obtained through several mechanisms. In anaerobic environments, iron in its ferrous form is freely diffusible through the outer membrane (OM) and transported into the cytoplasm by the Feo inner membrane transport system (7,8). However, the insolubility of ferric iron in aerobic environments limits accessibility to this nutrient. Moreover, the sequestration of iron by host proteins creates a substantial barrier to infection (9, 10). To overcome this barrier, P. aeruginosa synthesizes and secretes two siderophores, pyoverdine and pyochelin, which scavenge ferric iron (1-4). P. aeruginosa can also acquire heme, an abundant source of iron in the human host (11). Once internalized, heme is sequestered by the cytosolic PhuS heme chaperone (12). PhuS transfers heme to the iron-regulated HemO heme oxygenase, which degrades heme to biliverdin, releasing carbon monoxide and iron (13,14). Several studies have shown that iron acquisition is essential for P. aeruginosa virulence (1-5) and biofilm formation (15-17), demonstrating the central role of this element in P. aeruginosa pathogenesis.Despite its essentiality, iron and heme can be toxic due to their ability to catalyze the formation of reactive oxygen species. Thus, to maintain iron homeostasis, P. aeruginosa must be able to not only acquire iron but also regulate uptake of iron and heme from the environment, as well as iron use and storage. Expression of genes encoding iron and heme uptake systems in P. aeruginosa is ...
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment of such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, non-siderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by sub-inhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of , which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of, demonstrating that the PrrF sRNAs interact with the 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The Hfq protein interacted with UA-rich sequences in both PrrF sRNAs ( [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the mRNA (0.3 μM), and PrrF was able to bind to mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in The iron-responsive PrrF sRNAs play a central role in regulating iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in .
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen causing skin and soft tissue, respiratory, and bloodstream infections. The type III secretion system (T3SS) is one important virulence factor. Production of the T3SS is controlled by ExsA, a transcription factor that activates expression of the entire T3SS regulon. Global regulators including Vfr, RsmA, and Hfq also contribute to regulation of the T3SS. Vfr is a cAMP-responsive transcription factor that activates exsA transcription. RsmA, an RNA-binding protein, inversely controls expression of the T3SS and the type VI secretion system (T6SS). Hfq is an RNA chaperone that functions by stabilizing small noncoding RNAs (sRNAs) and/or facilitating base pairing between sRNAs and mRNA targets. A previous study identified sRNA 1061, which directly targets the exsA mRNA and likely inhibits ExsA synthesis. In this study, we screened an sRNA expression library and identified sRNA 179 as an Hfq-dependent inhibitor of T3SS gene expression. Further characterization revealed that sRNA 179 inhibits the synthesis of both ExsA and Vfr. The previous finding that RsmA stimulates ExsA and Vfr synthesis suggested that sRNA 179 impacts the Gac/Rsm system. Consistent with that idea, the inhibitory activity of sRNA 179 is suppressed in a mutant lacking rsmY and rsmZ, and sRNA 179 expression stimulates rsmY transcription. RsmY and RsmZ are small noncoding RNAs that sequester RsmA from target mRNAs. Our combined findings show that Hfq and sRNA 179 indirectly regulate ExsA and Vfr synthesis by reducing the available pool of RsmA, leading to reduced expression of the T3SS and cAMP-Vfr regulons. IMPORTANCE Control of gene expression by small noncoding RNA (sRNA) is well documented but underappreciated. Deep sequencing of mRNA preparations from Pseudomonas aeruginosa suggests that >500 sRNAs are generated. Few of those sRNAs have defined roles in gene expression. To address that knowledge gap, we constructed an sRNA expression library and identified sRNA 179 as a regulator of the type III secretion system (T3SS) and the cAMP-Vfr regulons. The T3SS- and cAMP-Vfr-controlled genes are critical virulence factors. Increased understanding of the signals and regulatory mechanisms that control these important factors will enhance our understanding of disease progression and reveal potential approaches for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.