HighlightsWe review models of systematic non-adherence and propose a new model for the effect.We use two simplified models to explore the effects of systematic non-adherence.We find that systematicness has a significant impact on the campaign outcome.The number of rounds attended can be analysed to find the level of systematicness.In published data the correlation between treatment rounds is between 0.281and 0.535.
Background:Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. : medRxiv preprint second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Discussion:Our work supports the decision to apply stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. We provide strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units. 2 to a cluster of pneumonia cases [1]. The virus was identified as a novel strain of coronavirus on 7th 3 January 2020 [2] and the first known death as a result of the disease occurred two days later [1]. Over 4 the next few days, cases were reported in several other cities in China and in other countries around 5 the world including South Korea, Japan and the United States of America. On 23rd January, the 6Chinese government issued an order for Wuhan city to enter "lockdown", whereby all public transport 7 was suspended and residents were not allowed to leave the city. Over the next 24 hours, these measures 8 were extended to all the major cities in Hubei province in an attempt to prevent further spread of 9 disease.
Background: In the UK, cases of COVID-19 have been declining since mid-April and there is good evidence to suggest that the effective reproduction number has dropped below 1, leading to a multi-phase relaxation plan for the country to emerge from lockdown. As part of this staggered process, primary schools are scheduled to partially reopen on 1st June. Evidence from a range of sources suggests that children are, in general, only mildly affected by the disease and have low mortality rates, though there is less certainty regarding children's role in transmission. Therefore, there is wide discussion on the impact of reopening schools. Methods: We compare eight strategies for reopening primary and secondary schools in England from 1st June, focusing on the return of particular year groups and the associated epidemic consequences. This is assessed through model simulation, modifying a previously developed dynamic transmission model for SARS-CoV-2. We quantify how the process of reopening schools affected contact patterns and anticipated secondary infections, the relative change in R according to the extent of school reopening, and determine the public health impact via estimated change in clinical cases and its sensitivity to decreases in adherence post strict lockdown. Findings: Whilst reopening schools, in any form, results in more mixing between children, an increase in R and hence transmission of the disease, the magnitude of that increase can be low dependent upon the age-groups that return to school and the behaviour of the remaining population. We predict that reopening schools in a way that allows half class sizes or that is focused on younger children is unlikely to push R above one, although there is noticeable variation between the regions of the country. Given that older children have a greater number of social contacts and hence a greater potential for transmission, our findings suggest reopening secondary schools results in larger increases in case burden than only reopening primary schools; reopening both generates the largest increase and could push R above one in some regions. The impact of less social-distancing in the rest of the population, generally has far larger effects than reopening schools and exacerbates the impacts of reopening. Discussion: Our work indicates that any reopening of schools will result in increased mixing and infection amongst children and the wider population, although the opening of schools alone is unlikely to push the value of R above one. However, impacts of other recent relaxations of lockdown measures are yet to be quantified, suggesting some regions may be closer to the critical threshold that would lead to a growth in cases. Given the uncertainties, in part due to limited data on COVID-19 in children, school reopening should be carefully monitored. Ultimately, the decision about reopening classrooms is a difficult trade-off between increased epidemiological consequences and the emotional, educational and developmental needs of children.
By mid-May 2020, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1 June 2020. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May 2020 that focused on the imminent opening of schools and consider what these results imply for future policy. We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R . We determined the associated public health impact and its sensitivity to changes in social distancing within the wider community. We predicted that reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases. Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June 2020 was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase. This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.