Cephalexin is a beta‐lactam antibiotic of the first generation of cephalosporins which is very effective against various bacterial infections. In this work, we investigate the structure and antibacterial activity of cephalexin solutions submitted to forced degradation under heat stress and photolytic irradiation. A combination of analytical techniques gathering LC/ESI‐MS and NMR spectroscopy allowed us to identify different chemical species amongst the byproducts, revealing that photolysis via UVA light leads to significant amounts of oxidized species that conserve the dihydrothiazine ring adjacent to the beta‐lactam ring. In contrast, thermodegradation induces the rupture of the bioactive moiety possibly with the production of cephalosporinic acid and deaminated species, which are inactive to bacteria. Microbiological analyses using E. coli as a model organism indicated that the antimicrobial capacity of samples submitted to thermolysis is suppressed while solutions submitted to irradiation with UVA light preserve their bactericidal power. Atomic force microscopy showed that cells incubated with photodegraded cephalexin are much longer than those incubated with the undegraded antibiotic, indicating that byproducts from photolysis inhibit septum formation and likely affect the action of penicillin‐binding protein 3 in the divisome of E. coli cells.
We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C–X–C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.