Plants developed under high (90%) relative air humidity (RH) have previously been shown to have large, malfunctioning stomata, which results in high water loss during desiccation and reduced dark induced closure. Stomatal movement is to a large extent regulated by abscisic acid (ABA). It has therefore been proposed that low ABA levels contribute to the development of malfunctioning stomata. In this study, we investigated the regulation of ABA content in rose leaves, through hormone analysis and b-glucosidase quantification. Compared with high RH, rose plants developed in moderate RH (60%) and 20 h photoperiod contained higher levels of ABA and b-glucosidase activity. Also, the amount of ABA increased during darkness simultaneously as the ABA-glucose ester (GE) levels decreased. In contrast, plants developed under high RH with 20 h photoperiod showed no increase in ABA levels during darkness, and had low b-glucosidase activity converting ABA-GE to ABA. Continuous lighting (24 h) resulted in low levels of b-glucosidase activity irrespective of RH, indicating that a dark period is essential to activate b-glucosidase. Our results provide new insight into the regulation of ABA under different humidities and photoperiods, and clearly show that b-glucosidase is a key enzyme regulating the ABA pool in rose plants.
High relative air humidity (RH) promotes stomatal opening in tomato leaves. This study examined the role of the plant hormones abscisic acid (ABA) and ethylene in high RH induced stomatal opening. Plants were grown in high (90%) and moderate (60%) RH or transferred from moderate to high RH. ABA levels were only slightly, but significantly decreased during darkness by increasing RH. However, a significantly higher ethylene evolution was found in high RH compared with moderate RH. Ethephon increased conductance and stomatal aperture in moderate RH. Treatment with amino-ethoxyvinylglycine (AVG) suppressed stomatal opening when plants were transferred from moderate to high RH. Similarly, blocking the ethylene receptor or using an ethylene-insensitive mutant (NR) reduced the response to high RH. These results demonstrate that both ethylene production and sensitivity play a role in high RH-induced stomatal opening in tomato leaves. The increased conductance found when plants were transferred to high RH could be counteracted by exogenous ABA spray. The ABA deficient mutant ‘Flacca’ produced high levels of ethylene irrespective of the RH and the difference in water loss and conductance between high and moderate grown ‘Flacca’ plants was attenuated compared with WT. The results indicate that both ABA and ethylene play a role in air humidity control of stomatal movement in tomato.
Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.