Critical loads offer a unique way of evaluating impacts of acid deposition by quantifying environmental sensitivity. The critical loads of acidity for UK peat soils have been based upon an arbitrary reduction in pH of 0.2 units. This chemical shift needs to be better related to adverse effects on sensitive biological receptors. It is known that effective precipitation pH equates closely to soil solution pH, and the latter is directly linkable to biotic effects of pH change. On continuation of a long-term experiment assessing impacts of simulated acid rain on peat microcosms in a realistic outdoor environment, Calluna vulgaris continued to flourish at acid deposition loads well above the existing critical load. Calluna plants were harvested and analysed, and acid deposition treatments to the microcosms continued to allow natural vegetation to regenerate. A diverse mixture of moorland plants and bryophytes established at acidity treatments well above the existing critical load, and only a very high acid load resulted in no natural regeneration. A critical effective rain pH value of 3.6 is suggested as a basis for setting critical loads. At this pH, Calluna grows well, and a healthy diverse vegetation community re-establishes when harvested. It is suggested that the peat critical load should be set at the acid load that, at any specific site, would result in a mean effective precipitation pH of 3.6.
Leaching of inorganic N species to stream waters from upland areas of the UK is increasing, reflecting the increases in atmospheric deposition of nitrogen species due to increased levels of vehicular emissions. Bracken cover in UK uplands is also increasing overall (Taylor, 1986), and the architectural nature of bracken has been shown to both increase deposition of atmospheric constituents to soils and change their chemical and physical nature. We have tested the nutrient status of upland podzols from the Lake District, Cumbria, UK, from under both moorland grass and bracken. The results show reduced levels of base cations and nitrate throughout the profile and decreases in the organic matter content of surface horizons as a consequence of bracken encroachment. We also report increased ammonium concentrations in lower soil horizons under bracken, possibly leading to increased leaching to stream waters. These results suggest either increased leaching of soil nutrients due to bracken encroachment or increased storage of nutrients within the bracken rhizome system. Results also suggest changes in either microbial activity or the microbial community of podzols, possibly due to the allelopathic nature of bracken. This may have caused changes in the soil nutrient dynamics, possibly accounting for some of the changes seen. We hypothesize that increased bracken cover within the British uplands has the potential to increase leaching of inorganic nitrogen to upland streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.