Elevated levels of vascular endothelial growth factor (VEGF) A are thought to cause glomerular endothelial cell (GEnC) dysfunction and albuminuria in diabetic nephropathy. We hypothesized that VEGFC could counteract these effects of VEGFA to protect the glomerular filtration barrier and reduce albuminuria. Isolated glomeruli were stimulated ex vivo with VEGFC, which reduced VEGFA- and type 2 diabetes–induced glomerular albumin solute permeability (Ps’alb). VEGFC had no detrimental effect on glomerular function in vivo when overexpression was induced locally in podocytes (podVEGFC) in otherwise healthy mice. Further, these mice had reduced glomerular VEGFA mRNA expression, yet increased glomerular VEGF receptor heterodimerization, indicating differential signaling by VEGFC. In a model of type 1 diabetes, the induction of podVEGFC overexpression reduced the development of hypertrophy, albuminuria, loss of GEnC fenestrations and protected against altered VEGF receptor expression. In addition, VEGFC protected against raised Ps’alb by endothelial glycocalyx disruption in glomeruli. In summary, VEGFC reduced the development of diabetic nephropathy, prevented VEGF receptor alterations in the diabetic glomerulus, and promoted both glomerular protection and endothelial barrier function. These important findings highlight a novel pathway for future investigation in the treatment of diabetic nephropathy.
P2X ion channels have been functionally characterized from a range of eukaryotes. Although these receptors can be broadly classified into fast and slow desensitizing, the molecular mechanisms underlying current desensitization are not fully understood. Here, we describe the characterization of a P2X receptor from the cattle tick Boophilus microplus (BmP2X) displaying extremely slow current kinetics, little desensitization during ATP application, and marked rundown in current amplitude between sequential responses. ATP (EC 50 , 67.1 M) evoked concentration-dependent currents at BmP2X that were antagonized by suramin (IC 50 , 4.8 M) and potentiated by the antiparasitic drug amitraz. Ivermectin did not potentiate BmP2X currents, but the mutation M362L conferred ivermectin sensitivity. To investigate the mechanisms underlying slow desensitization we generated intracellular domain chimeras between BmP2X and the rapidly desensitizing P2X receptor from Hypsibius dujardini. Exchange of N or C termini between these fast-and slow-desensitizing receptors altered the rate of current desensitization toward that of the donor channel. Truncation of the BmP2X C terminus identified the penultimate residue (Arg413) as important for slow desensitization. Removal of positive charge at this position in the mutant R413A resulted in significantly faster desensitization, which was further accentuated by the negatively charged substitution R413D. R413A and R413D, however, still displayed current rundown to sequential ATP application. Mutation to a positive charge (R413K) reconstituted the wild-type phenotype. This study identifies a new determinant of P2X desensitization where positive charge at the end of the C terminal regulates current flow and further demonstrates that rundown and desensitization are governed by distinct mechanisms.
Background: P2X receptor subtypes show differences in pharmacology.Results: Chimeric P2X receptors exhibit modified partial agonist action and recovery from desensitization.Conclusion: Interactions among the extracellular, transmembrane, and intracellular regions regulate channel properties.Significance: Agonist binding and transitions to channel opening (efficacy), behavior of the open channel, as well as recovery from desensitization can be controlled independently.
ATP is the native agonist for cell-surface ligand-gated P2X receptor (P2XR) cation channels. The seven mammalian subunits (P2X1–7) form homo- and heterotrimeric P2XRs having significant physiological and pathophysiological roles. Pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) is an effective antagonist at most mammalian P2XRs. Lys-249 in the extracellular domain of P2XR has previously been shown to contribute to PPADS action. To map this antagonist site, we generated human P2X1R cysteine substitutions within a circle centered at Lys-249 (with a radius of 13 Å equal to the length of PPADS). We hypothesized that cysteine substitutions of residues involved in PPADS binding would (i) reduce cysteine accessibility (measured by MTSEA-biotinylation), (ii) exhibit altered PPADS affinity, and (iii) quench the fluorescence of cysteine residues modified with MTS-TAMRA. Of the 26 residues tested, these criteria were met by only four (Lys-70, Asp-170, Lys-190, and Lys-249), defining the antagonist site, validating molecular docking results, and thereby providing the first experimentally supported model of PPADS binding. This binding site overlapped with the ATP-binding site, indicating that PPADS sterically blocks agonist access. Moreover, PPADS induced a conformational change at the cysteine-rich head (CRH) region adjacent to the orthosteric ATP-binding pocket. The importance of this movement was confirmed by demonstrating that substitution introducing positive charge present in the CRH of the hP2X1R causes PPADS sensitivity at the normally insensitive rat P2X4R. This study provides a template for developing P2XR subtype selectivity based on the differences among the mammalian subunits around the orthosteric P2XR-binding site and the CRH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.