Foliage of Quercus ilex L. (holm oak), a widespread Mediterranean species, constitutively emits large quantities of a complex genotype-dependent mixture of volatile organic compounds (VOCs). During a mass outbreak of gypsy moth (Lymantria dispar L.) in southern France, we examined the effects of gypsy moth feeding on VOC production from whole apices and single leaves of Q. ilex. Feeding induced the emission of new VOCs at rates up to 240 ng m(-2) s(-1) (16% of the total VOC release), which mainly consisted of sesquiterpenes, a homoterpene and a monoterpene alcohol. The new compounds were emitted after a delay of several hours following infestation and their production declined rapidly when caterpillars were removed. Undamaged leaves of infested trees emitted new VOCs, but with a different composition to those of damaged leaves and at lower rates. Neither caterpillars nor caterpillar excrement released VOCs. Emission of constitutive VOCs by undamaged leaves of infested trees temporary increased by up to 30%, whereas, in damaged leaves, they remained stable and decreased after some days when necrotic spots occurred around the feeding sites. In continuous light and at constant temperature, emissions of new VOCs showed a marked diurnal cycle, whereas those of constitutive VOCs did not. The results suggest that induced VOCs make a significant contribution to the atmospheric VOC load and may mediate trophic interactions. The observed differential local and systemic responses in composition, quantity and time courses of emissions mirror the existence of several regulation processes triggered by different signaling compounds and elicitors.
Abstract. Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90 % of the total BVOC release (mean ± SD: 738 ± 378 ng m −2 projected leaf area s −1 or 13.1 ± 6.9 µg g −1 leaf dry weight h −1 ) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO 2 -assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (∼43 • C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked around 37 • C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly Correspondence to: M. Staudt (michael.staudt@cefe.cnrs.fr) increased between 40 and 50 • C accompanied by a burst of GLVs. In all experiments, decreases of MT-hc emissions under high temperatures were correlated with decreases in CO 2 -assimilation and/or photosynthetic electron transport. We conclude that light and temperature can have interactive short-term effects on the quantity and quality of BVOC emissions from Q. coccifera through substrate limitations of MT biosynthesis occurring at temperatures supraoptimal for photosynthetic processes that are exacerbated by oxidative stress and membrane damages. Such interactive effects are likely to occur frequently during hot and dry summers and simulations made in this work showed that they may have important consequences for emission predictions.
Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90 % of the total BVOC release (mean ± SD: 738 ± 378 ng m−2 projected leaf area s−1 or 13.1 ± 6.9 μg g−1 leaf dry weight h−1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked already around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments, decreases of MT-hc emissions under high temperatures were correlated with decreases in CO2-assimilation and/or photosynthetic electron transport. We conclude that light and temperature can have interactive short-term effects on the quantity and quality of BVOC emissions from Q. coccifera through substrate limitations of MT biosynthesis occurring at temperatures supraoptimal for photosynthetic processes that are exacerbated by oxidative stress and membrane damages. Such interactive effects are likely to occur frequently during hot and dry summers and simulations made in this work showed that they may have important consequences for emission predictions
At the Rio+20 Conference (June 2012), the biodiversity conservation agenda was subsumed into broader environmental issues like sustainable development, "green economy," and climate change. This shoehorning of biodiversity issues is concomitant with a trend toward market-based instruments and toward standardized biodiversity assessment and monitoring. This article raises concern that these trends can marginalize important and specific aspects of biodiversity governance, including other policy tools and regionspecific socio-ecological environments. Among other trends, this contributes to the marginalization of agroecosystems as habitat and matrix for biodiversity. Such agroecosystems, however, can have a major impact on conservation outcomes as they comprise a major part of terrestrial lands. If the biodiversity crisis is to be curbed, special attention must be drawn to societies, institutional approaches, and environments that are currently marginalized in conservation policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.