The survival motor neuron (SMN) transcript is encoded by two genes, SMNT and SMNC. The autosomal recessive proximal spinal muscular atrophy that maps to 5q12 is caused by mutations in the SMNT gene. The SMNT gene can be distinguished from the SMNC gene by base-pair changes in exons 7 and 8. SMNT exon 7 is not detected in approximately 95% of SMA cases due to either deletion or sequence-conversion events. Small mutations in SMNT now have been identified in some of the remaining nondeletion patients. However, there is no reliable quantitative assay for SMNT, to distinguish SMA compound heterozygotes from non-5q SMA-like cases (phenocopies) and to accurately determine carrier status. We have developed a quantitative PCR assay for the determination of SMNT and SMNC gene-copy number. This report demonstrates how risk estimates for the diagnosis and detection of SMA carriers can be modified by the accurate determination of SMNT copy number.
Preliminary in vitro and in vivo studies with valproic acid (VPA) in cell lines and patients with spinal muscular atrophy (SMA) demonstrate increased expression of SMN, supporting the possibility of therapeutic benefit. We performed an open label trial of VPA in 42 subjects with SMA to assess safety and explore potential outcome measures to help guide design of future controlled clinical trials. Subjects included 2 SMA type I ages 2–3 years, 29 SMA type II ages 2–14 years and 11 type III ages 2–31 years, recruited from a natural history study. VPA was well-tolerated and without evident hepatotoxicity. Carnitine depletion was frequent and temporally associated with increased weakness in two subjects. Exploratory outcome measures included assessment of gross motor function via the modified Hammersmith Functional Motor Scale (MHFMS), electrophysiologic measures of innervation including maximum ulnar compound muscle action potential (CMAP) amplitudes and motor unit number estimation (MUNE), body composition and bone density via dual-energy X-ray absorptiometry (DEXA), and quantitative blood SMN mRNA levels. Clear decline in motor function occurred in several subjects in association with weight gain; mean fat mass increased without a corresponding increase in lean mass. We observed an increased mean score on the MHFMS scale in 27 subjects with SMA type II (p≤0.001); however, significant improvement was almost entirely restricted to participants <5 years of age. Full length SMN levels were unchanged and Δ7SMN levels were significantly reduced for 2 of 3 treatment visits. In contrast, bone mineral density (p≤0.0036) and maximum ulnar CMAP scores (p≤0.0001) increased significantly.ConclusionsWhile VPA appears safe and well-tolerated in this initial pilot trial, these data suggest that weight gain and carnitine depletion are likely to be significant confounding factors in clinical trials. This study highlights potential strengths and limitations of various candidate outcome measures and underscores the need for additional controlled clinical trials with VPA targeting more restricted cohorts of subjects.Trial RegistrationClinicalTrials.gov
The spinal muscular atrophy (SMA) region on chromosome 5q13 contains an inverted duplication of about 500 kb, and deleterious mutations in the survival motor neuron 1 (SMN1) gene cause SMA, a common lethal childhood neuropathy. We have used a number of approaches to probe the evolutionary history of these genes and show that SMN gene duplication and the appearance of SMN2 occurred at very distinct evolutionary times. Molecular fossil and molecular clock data suggest that this duplication may have occurred as recently as 3 million years ago in that the position and identity repetitive elements are identical for both human SMN genes and overall sequence divergence ranged from 0.15% to 0.34%. However, these approaches ignore the possibility of sequence homogenization by means of gene conversion. Consequently, we have used quantitative polymerase chain rection and analysis of allelic variants to provide physical evidence for or against SMN gene duplication in the chimpanzee, mankind's closest relative. These studies have revealed that chimpanzees have 2-7 copies of the SMN gene per diploid genome; however, the two nucleotides diagnostic for exons 7-8 and the SMNdelta7 mRNA product of the SMN2 gene are absent in non-human primates. In contrast, the SMN2 gene has been detected in all extant human populations studied to date, including representatives from Europe, the Central African Republic, and the Congo. These data provide conclusive evidence that SMN gene duplication occurred more than 5 million years ago, before the separation of human and chimpanzee lineages, but that SMN2 appears for the first time in Homo sapiens.
BackgroundValproic acid (VPA) has demonstrated potential as a therapeutic candidate for spinal muscular atrophy (SMA) in vitro and in vivo.MethodsTwo cohorts of subjects were enrolled in the SMA CARNIVAL TRIAL, a non-ambulatory group of “sitters” (cohort 1) and an ambulatory group of “walkers” (cohort 2). Here, we present results for cohort 1: a multicenter phase II randomized double-blind intention-to-treat protocol in non-ambulatory SMA subjects 2–8 years of age. Sixty-one subjects were randomized 1∶1 to placebo or treatment for the first six months; all received active treatment the subsequent six months. The primary outcome was change in the modified Hammersmith Functional Motor Scale (MHFMS) score following six months of treatment. Secondary outcomes included safety and adverse event data, and change in MHFMS score for twelve versus six months of active treatment, body composition, quantitative SMN mRNA levels, maximum ulnar CMAP amplitudes, myometry and PFT measures.ResultsAt 6 months, there was no difference in change from the baseline MHFMS score between treatment and placebo groups (difference = 0.643, 95% CI = −1.22–2.51). Adverse events occurred in >80% of subjects and were more common in the treatment group. Excessive weight gain was the most frequent drug-related adverse event, and increased fat mass was negatively related to change in MHFMS values (p = 0.0409). Post-hoc analysis found that children ages two to three years that received 12 months treatment, when adjusted for baseline weight, had significantly improved MHFMS scores (p = 0.03) compared to those who received placebo the first six months. A linear regression analysis limited to the influence of age demonstrates young age as a significant factor in improved MHFMS scores (p = 0.007).ConclusionsThis study demonstrated no benefit from six months treatment with VPA and L-carnitine in a young non-ambulatory cohort of subjects with SMA. Weight gain, age and treatment duration were significant confounding variables that should be considered in the design of future trials.Trial RegistryClinicaltrials.gov NCT00227266
Childhood spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by absent or deficient full-length survival motor neuron (SMN) protein. Clinical studies and animal models suggest that SMA is a developmental defect in neuromuscular interaction; however, the role of SMN in this process remains unclear. In the present study, we have determined the subcellular localization of SMN during retinoic-acid-induced neuronal differentiation of mouse embryonal teratocarcinoma P19 cells as well as in skeletal muscle during the critical period of neuromuscular maturation. We demonstrate, for the first time, SMN accumulation in growth-cone- and filopodia-like structures in both neuronal- and glial-like cells, identifying SMN as a new growth cone marker. Indeed, SMN was present at the leading edge of neurite outgrowths, suggesting that SMN may play a role in this process. In addition, SMN was detected as small dot-like particles within the cytoplasm of skeletal muscle during the first 2 weeks after birth, but their number peaked by P6. Intense SMN staining in neuromuscular junctions was observed throughout the entire postnatal period examined. Taken together, these results suggest that SMN may indeed fulfill neuronal- and muscle-specific functions, providing a more plausible mechanism explaining motor neuron degeneration and associated denervation atrophy of skeletal muscles in SMA. The primary SMA pathology most likely initiates in the peripheral axon--the result of deficient neurite outgrowth and/or neuromuscular maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.