Locomotion is controlled by spinal circuits that generate rhythm and coordinate left-right and flexor-extensor motoneuronal activities. The outputs of motoneurons and spinal interneuronal circuits are shaped by sensory feedback, relaying peripheral signals that are critical to the locomotor and postural control. Several studies in invertebrates and vertebrates have argued that the Down syndrome cell adhesion molecule (DSCAM) would play an important role in the normal development of neural circuits through cell spacing and targeting, axonal and dendritic branching, and synapse establishment and maintenance. Although there is evidence that DSCAM is important for the normal development of neural circuits, little is known about its functional contribution to spinal motor circuits. We show here that adult DSCAM(2J) mutant mice, lacking DSCAM, exhibit a higher variability in their locomotor pattern and rhythm during treadmill locomotion. Retrograde tracing studies in neonatal isolated spinal cords show an increased number of spinal commissural interneurons, which likely contributes to reducing the left-right alternation and to increasing the flexor/swing duration during neonatal and adult locomotion. Moreover, our results argue that, by reducing the peripheral excitatory drive onto spinal motoneurons, the DSCAM mutation reduces or abolishes spinal reflexes in both neonatal isolated spinal cords and adult mice, thus likely impairing sensorimotor control. Collectively, our functional, electrophysiological, and anatomical studies suggest that the mammalian DSCAM protein is involved in the normal development of spinal locomotor and sensorimotor circuits.
Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits.
While it is well known that netrin-1 and its receptors UNC5 and UNC40 family members are involved in the normal establishment of the motor cortex and its corticospinal tract, less is known about its other receptor Down syndrome cell adherence molecule (DSCAM). DSCAM is expressed in the developing motor cortex, regulates axonal outgrowth of cortical neurons, and its mutation impairs the dendritic arborization of cortical neurons, thus suggesting that it might be involved in the normal development and functioning of the motor cortex. In comparison to WT littermates, DSCAM2J mutant mice slipped and misplaced their paw while walking on the rungs of a horizontal ladder, and exhibited more difficulties in stepping over an obstacle while walking at slow speed. Anterograde tracing showed a normal pyramidal decussation and corticospinal projection, but a more dorsal distribution of their axonal terminals in the spinal gray matter. Intracortical microstimulations showed a reduced corticospinal and intracortical efficacy, whereas stimulations of the pyramidal tract revealed a normal spinal efficacy and excitability of corticospinal tract axons, thus arguing for a dysfunctional cortical development. Our study reveals impairment of the network dynamics within the motor cortex, reducing corticospinal drive and impairing voluntary locomotor functions upon DSCAM2J mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.