BackgroundThe management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects.Main body of abstractThis review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous.Short conclusionsThis review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Oxytocin receptor (OTR) expression is increased before the onset of labor in all models of parturition. However, the mechanisms responsible for the increase in OTR expression are uncertain. Animal data suggest that uterine stretch increases OTR mRNA expression. In primary cultures of human uterine smooth muscle cells obtained from nonpregnant (NP) women and pregnant women before (NL) and after (L) the onset of labor, we investigated the effect of stretch on the expression of OTR mRNA and DNA binding of activator protein-1 (AP-1), CCAAT/enhancer binding protein (C/EBP)beta, and nuclear factor-kappaB transcription factors. OTR expression was least in NL, intermediate in NP, and greatest in L cells. Stretch of NL cells resulted in up-regulation of OTR mRNA expression associated with increased OTR gene promoter activity. Stretch of NP and L cells did not affect OTR mRNA expression. The increased promoter activity was associated with increased DNA binding of C/EBP and AP-1 but not nuclear factor-kappaB transcription factors. Overexpression of C/EBP, but not AP-1, increased OTR promoter activity. We conclude that stretch of NL cells results in increased OTR mRNA expression probably through increased C/EBPbeta DNA binding. These data suggest that stretch contributes to the massive increase in OTR expression before the onset of human labor.
A Th2-like response, prominent in T cells and driven by tuberculosis antigen, is present in tuberculosis and modulated by treatment, suggesting a role for IL-4 and IL-4delta2 in the pathogenesis of tuberculosis and their ratio as a possible marker of disease activity. The specific antigens inducing the IL-4 response require identification to facilitate future vaccine development strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.