The trafficking and function of cell surface proteins in eukaryotic cells may require association with detergent-resistant sphingolipid-and sterol-rich membrane domains. The aim of this work was to obtain evidence for lipid domain phenomena in plant membranes. A protocol to prepare Triton X-100 detergent-resistant membranes (DRMs) was developed using Arabidopsis (Arabidopsis thaliana) callus membranes. A comparative proteomics approach using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry revealed that the DRMs were highly enriched in specific proteins. They included eight glycosylphosphatidylinositol-anchored proteins, several plasma membrane (PM) ATPases, multidrug resistance proteins, and proteins of the stomatin/prohibitin/hypersensitive response family, suggesting that the DRMs originated from PM domains. We also identified a plant homolog of flotillin, a major mammalian DRM protein, suggesting a conserved role for this protein in lipid domain phenomena in eukaryotic cells. Lipid analysis by gas chromatography-mass spectrometry showed that the DRMs had a 4-fold higher sterol-to-protein content than the average for Arabidopsis membranes. The DRMs were also 5-fold increased in sphingolipid-to-protein ratio. Our results indicate that the preparation of DRMs can yield a very specific set of membrane proteins and suggest that the PM contains phytosterol and sphingolipid-rich lipid domains with a specialized protein composition. Our results also suggest a conserved role of lipid modification in targeting proteins to both the intracellular and extracellular leaflet of these domains. The proteins associated with these domains provide important new experimental avenues into understanding plant cell polarity and cell surface processes.Biological membranes consist of a perplexing number of lipids (Edidin, 2003a). The classical model of membranes assumes that these lipids form a homogeneous fluid-like or liquid-disordered (l d ) phase, which allows free diffusion of individual molecules and resident proteins (Edidin, 2003b). However, numerous recent studies on model membranes have demonstrated that certain lipids, in particular sphingolipids and cholesterol, may form relatively stable clusters by tight self-association, thus segregating them from surrounding phospholipids (Schroeder et al., 1994; Ahmed et al., 1997;Dietrich et al., 2001;Silvius, 2003). The association of rigid sterol molecules with the long and saturated acyl chains of sphingolipids results in the formation of a more organized, liquidordered (l o ) phase; l o and l d phases can coexist in the same membrane (Brown and London, 1998;Edidin, 2003b). The lipid raft hypothesis postulates that a sterol-and sphingolipid-rich l o phase is also present in cell membranes and that it forms discrete microdomains or lipid rafts that diffuse in the bulk of the l d phospholipid phase (Simons and Ikonen, 1997;Mayor and Rao, 2004).There is substantial evidence supporting the existence of plasma membrane (PM) domains in ...
Several studies have provided new insights into the role of sphingolipid/sterol-rich domains so-called lipid rafts of the plasma membrane (PM) from mammalian cells, and more recently from leaves, cell cultures, and seedlings of higher plants. Here we show that lipid raft domains, defined as Triton X-100-insoluble membranes, can also be prepared from Medicago truncatula root PMs. These domains have been extensively characterized by ultrastructural studies as well as by analysis of their content in lipids and proteins. M. truncatula lipid domains are shown to be enriched in sphingolipids and D 7 -sterols, with spinasterol as the major compound, but also in steryl glycosides and acyl-steryl glycosides. A large number of proteins (i.e. 270) have been identified. Among them, receptor kinases and proteins related to signaling, cellular trafficking, and cell wall functioning were well represented whereas those involved in transport and metabolism were poorly represented. Evidence is also given for the presence of a complete PM redox system in the lipid rafts.
Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2-1 mutant. The pas2-1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes. cuticular wax ͉ elongase ͉ sphingolipid ͉ triacylglycerol ͉ leaf development
The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-D-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.