The present paper describes the structures of the N-linked oligosaccharides of the human-immunodeficiency-virus (HIV) envelope glycoprotein gp120 (cloned from the HTLV-III B isolate and expressed as a secreted fusion protein after transfection of Chinese-hamster ovary cells), which is known to bind with high affinity to human T4-lymphocytes. Oligosaccharides were released from peptide by hydrazinolysis, fractionated by paper electrophoresis, high-performance lectin-affinity chromatography and Bio-Gel P-4 column chromatography, and their structures determined by sequential exoglycosidase digestions in conjunction with methylation analysis. The glycoprotein was found to be unique in its diversity of oligosaccharide structures. These include high-mannose type and hybrid type, as well as four categories of complex-type chains: mono-, bi-, tri- and tetra-antennary, with or without N-acetyl-lactosamine repeats, and with or without a core-region fucose residue. Among the sialidase-treated oligosaccharides, no less than 29 structures were identified as follows: (formula; see text) where G is galactose, GN is N-acetylglucosamine, M is mannose, F is fucose, and '+/- ' means that residues are present in a proportion of chains. The actual number of oligosaccharide structures is much greater, since before desialylation there was evidence that, among the hybrid and complex-type chains, all but 6% contained sialic acid at the C-3 position of terminal galactose residues, and partially sialylated forms of the bi- and multi-antennary chains were present. Detailed evidence for the proposed oligosaccharide sequences will be published as a supplementary paper [T. Mizuochi, M. W. Spellman, M. Larkin, J. Solomon, L. J. Basa & T. Feizi (1988) Biomed. Chromatogr., in the press].
The stability of the immunologic adjuvant QS-21 (Cambridge Biotech Corp.) was optimized for use in the MN rgp120 HIV-1 subunit vaccine. QS-21, a saponin purified by reversed phase HPLC from an extract of the bark of the Quillaja saponaria Molina tree, consisted initially of one species (QS-21A), but converted to two species, QS-21A and QS-21B, in aqueous solution. NMR studies indicated that the two species are structural isomers and that isomerization occurs by intramolecular trans-esterification of the fatty acid moiety between the 3- and 4-hydroxyl groups of the fucose ring (Jacobsen et al. Carbohydr. Res., in press). Both isomers were adjuvant active. Storage of QS-21 in aqueous solution resulted in the interconversion between these isomer forms, as well as the slow formation of degradation products due to ester hydrolysis. The critical micellar concentration of QS-21 in succinate buffer was measured by a fluorescent probe method to be 51 +/- 9 micrograms/mL. Studies were performed at different concentrations of QS-21 to assess the influence of micelle formation on stability. These experiments indicated that QS-21 is more stable in the micellar form, presumably because the most labile ester bond linking the fatty acid moiety to fucose is constrained or buried in the hydrophobic micellar environment. The pH of maximum stability was pH 5.5, the pH for minimum degradation of most esters. The final formulation, 500 micrograms/mL QS-21 in 20 mM sodium succinate, 150 mM NaCl, pH 5.5, provided a shelf-life of greater than 2 years.
Infection of T-lymphocytes and macrophages by human immunodeficiency virus (HIV) is mediated by the binding of the HIV envelope glycoprotein to the cell-surface receptor glycoprotein CD4. A soluble, recombinant CD4 molecule (rCD4), produced by expression of a truncated CD4 gene in Chinese hamster ovary (CHO) cells [Smith et al. (1987) Science 238, 1704-1707], is in clinical trials as a potential therapeutic agent in the treatment of acquired immunodeficiency syndrome (AIDS). In the present study, the structures of the Asn-linked oligosaccharides of soluble rCD4 have been elucidated. The rCD4 molecule has two potential sites for N-glycosylation, Asn-271 and Asn-300. Tryptic glycopeptides containing either of the sites were purified by reversed-phase HPLC, and their oligosaccharides were released enzymatically. The structures of the oligosaccharides were determined by methylation analysis, high-pH anion-exchange chromatography, fast-atom bombardment mass spectrometry, and 1H NMR spectroscopy at 500 MHz. Asn-271 was found to carry diantennary N-acetyllactosamine-type ("complex") oligosaccharides, of which 8% were asialo, 55% were monosialyl, and 37% were disialyl. Approximately 18% of these structures contained fucose alpha(1-->6) linked to the reducing GlcNAc residue. Two different hybrid structures were found to account for 34% of the oligosaccharides attached to Asn-300. The remainder of the oligosaccharides attached to Asn-300 were diantennary N-acetyllactosamine-type, of which 10% were asialo, 61% were monosialyl, and 29% were disialyl. Approximately 9% of the hybrid structures and 40% of the N-acetyllactosamine structures at Asn-300 were found to contain fucose alpha(1-->6) linked to the innermost GlcNAc residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.