The SPAST gene encoding for spastin plays a central role in the genetically heterogeneous group of diseases termed hereditary spastic paraplegia (HSP). In this study, we attempted to expand and refine the genetic and phenotypic characteristics of SPAST associated HSP by examining a large cohort of HSP patients/families. Screening of 200 unrelated HSP cases for mutations in the SPAST gene led to detection of 57 mutations (28.5%), of which 47 were distinct and 29 were novel mutations. The distribution analysis of known SPAST mutations over the structural domains of spastin led to the identification of several regions where the mutations were clustered. Mainly, the clustering was observed in the AAA (ATPases associated with diverse cellular activities) domain; however, significant clustering was also observed in the MIT (microtubule interacting and trafficking), MTBD (microtubule-binding domain) and an N-terminal region (228 -269 residues). Furthermore, we used a previously generated structural model of spastin as a framework to classify the missense mutations in the AAA domain from the HSP patients into different structural/functional groups. Our data also suggest a tentative genotype-phenotype correlation and indicate that the missense mutations could cause an earlier onset of the disease.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal-dominant disease characterized by recurrent epistaxis, mucocutaneous telangiectasias and visceral arteriovenous malformations. Mutations in endoglin (ENG) and activin A receptor type II-like kinase 1 (ACVRL1 or ALK1) have been found in patients with HHT. We have screened a total of 51 unselected German index cases with the suspected diagnosis of HHT. We identified 30 different mutations in 32 cases (62.7%) by direct sequencing. Among these mutations, 11 of 13 ENG mutations and 12 of 17 ACVRL1 mutations were not previously reported in the literature. Two of the ACVRL1 mutations were each shared by two families. An analysis of the genotype-phenotype correlation is consistent with a more common frequency of pulmonary arteriovenous malformations in patients with ENG mutations than in patients with ACVRL1 mutations in our collective.
Dilated cardiomyopathy (DCM) belongs to the most frequent forms of cardiomyopathy mainly characterized by cardiac dilatation and reduced systolic function. Although most cases of DCM are classified as sporadic, 20–30% of cases show a heritable pattern. Familial forms of DCM are genetically heterogeneous, and mutations in several genes have been identified that most commonly play a role in cytoskeleton and sarcomere-associated processes. Still, a large number of familial cases remain unsolved. Here, we report five individuals from three independent families who presented with severe dilated cardiomyopathy during the neonatal period. Using whole-exome sequencing (WES), we identified causative, compound heterozygous missense variants in RPL3L (ribosomal protein L3-like) in all the affected individuals. The identified variants co-segregated with the disease in each of the three families and were absent or very rare in the human population, in line with an autosomal recessive inheritance pattern. They are located within the conserved RPL3 domain of the protein and were classified as deleterious by several in silico prediction software applications. RPL3L is one of the four non-canonical riboprotein genes and it encodes the 60S ribosomal protein L3-like protein that is highly expressed only in cardiac and skeletal muscle. Three-dimensional homology modeling and in silico analysis of the affected residues in RPL3L indicate that the identified changes specifically alter the interaction of RPL3L with the RNA components of the 60S ribosomal subunit and thus destabilize its binding to the 60S subunit. In conclusion, we report that bi-allelic pathogenic variants in RPL3L are causative of an early-onset, severe neonatal form of dilated cardiomyopathy, and we show for the first time that cytoplasmic ribosomal proteins are involved in the pathogenesis of non-syndromic cardiomyopathies.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominantly inherited disorder characterized by cutaneous and mucosal telangiectasias, epistaxis and arteriovenous malformations in lung, liver, central nervous system, and gastrointestinal tract. Mutations in the genes for endoglin (ENG) and for activin A receptor type II-like kinase 1 (ALK-1) have been identified to be associated with HHT. Intrahepatic manifestation in HHT might lead to the requirement of liver transplantation. We report here on 6 liver transplanted patients and 2 who were scheduled for liver transplantation due to intrahepatic HHT, in whom both genes were sequenced. Mutation analysis revealed in all patients the presence of mutations in ALK-1. In conclusion, these results are of possible prognostic value concerning the need of liver transplantation in HHT patients. (Liver Transpl 2005;11: 1132-1135.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.