-Context -Genotyping of single nucleotide polymorphism (SNP C/T -13910 ) located upstream of the lactase gene is used to determine adult-type hypolactasia/lactase persistence in North-European Caucasian subjects. The applicability of this polymorphism has been studied by comparing it with the standard diagnostic methods in different populations. Objective -To compare the lactose hydrogen breath test with the genetic test in a sample of the Colombian Caribbean population. Methods -Lactose hydrogen breath test and genotyping of SNP C/T -13910 were applied to 128 healthy individuals (mean age 35 ± 1). A positive lactose hydrogen breath test was indicative of hypolactasia. Genotyping was done using polymerase chain reaction/restriction fragment length polymorphism. The kappa index was used to establish agreement between the two methods. Results -Seventy-six subjects (59%) were lactose-maldigesters (hypolactasia) and 52 subjects (41%) were lactose-digesters (lactase persistence). The frequencies of the CC, CT and TT genotypes were 80%, 20% and 0%, respectively. Genotyping had 97% sensitivity and 46% specificity. The kappa index = 0.473 indicates moderate agreement between the genotyping of SNP C/T -13910 and the lactose hydrogen breath test. Conclusion -The moderate agreement indicates that the genotyping of the SNP C/T -13910 is not applicable to determine adult-type hypolactasia/lactase persistence in the population participating in this study.
The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the coimmobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, 30 ± 1°C, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.