Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits.
BackgroundThe impact of prenatal lead exposure on neurodevelopment remains unclear in terms of consistency, the trimester of greatest vulnerability, and the best method for estimating fetal lead exposure.ObjectiveWe studied prenatal lead exposure’s impact on neurodevelopment using repeated measures of fetal dose as reflected by maternal whole blood and plasma lead levels.MethodsWe measured lead in maternal plasma and whole blood during each trimester in 146 pregnant women in Mexico City. We then measured umbilical cord blood lead at delivery and, when offspring were 12 and 24 months of age, measured blood lead and administered the Bayley Scales of Infant Development. We used multivariate regression, adjusting for covariates and 24-month blood lead, to compare the impacts of our pregnancy measures of fetal lead dose.ResultsMaternal lead levels were moderately high with a first-trimester blood lead mean (± SD) value of 7.1 ± 5.1 μg/dL and 14% of values ≥10 μg/dL. Both maternal plasma and whole blood lead during the first trimester (but not in the second or third trimester) were significant predictors (p < 0.05) of poorer Mental Development Index (MDI) scores. In models combining all three trimester measures and using standardized coefficients, the effect of first-trimester maternal plasma lead was somewhat greater than the effect of first-trimester maternal whole blood lead and substantially greater than the effects of second- or third-trimester plasma lead, and values averaged over all three trimesters. A 1-SD change in first-trimester plasma lead was associated with a reduction in MDI score of 3.5 points. Postnatal blood lead levels in the offspring were less strongly correlated with MDI scores.ConclusionsFetal lead exposure has an adverse effect on neurodevelopment, with an effect that may be most pronounced during the first trimester and best captured by measuring lead in either maternal plasma or whole blood.
ObjectiveLow-level postnatal lead exposure is associated with poor intellectual development in children, although effects of prenatal exposure are less well studied. We hypothesized that prenatal lead exposure would have a more powerful and lasting impact on child development than postnatal exposure.DesignWe used generalized linear mixed models with random intercept and slope to analyze the pattern of lead effect of the cohort from pregnancy through 10 years of age on child IQ from 6 to 10 years. We statistically evaluated dose–response nonlinearity.ParticipantsA cohort of 175 children, 150 of whom had complete data for all included covariates, attended the National Institute of Perinatology in Mexico City from 1987 through 2002.Evaluations/MeasurementsWe used the Wechsler Intelligence Scale for Children–Revised, Spanish version, to measure IQ. Blood lead (BPb) was measured by a reference laboratory of the Centers for Disease Control and Prevention (CDC) quality assurance program for BPb.ResultsGeometric mean BPb during pregnancy was 8.0 μg/dL (range, 1–33 μg/dL), from 1 through 5 years was 9.8 μg/dL (2.8–36.4 μg/dL), and from 6 through 10 years was 6.2 μg/dL (2.2–18.6 μg/dL). IQ at 6–10 years decreased significantly only with increasing natural-log third-trimester BPb (β = −3.90; 95% confidence interval, −6.45 to −1.36), controlling for other BPb and covariates. The dose–response BPb–IQ function was log-linear, not linear–linear.ConclusionsLead exposure around 28 weeks gestation is a critical period for later child intellectual development, with lasting and possibly permanent effects. There was no evidence of a threshold; the strongest lead effects on IQ occurred within the first few micrograms of BPb.Relevance to Clinical PracticeCurrent CDC action limits for children applied to pregnant women permit most lead-associated child IQ decreases measured over the studied BPb range.
Background Recent evidence suggests that low-level environmental exposure to manganese adversely affects child growth and neurodevelopment. Previous studies have addressed the effects of prenatal exposure, but little is known about developmental effects of early postnatal exposure. Methods We studied 448 children born in Mexico City from 1997 through 2000, using a longitudinal study to investigate neurotoxic effects of early life manganese exposure. Archived blood samples, collected from children at 12 and 24 months of age, were analyzed for manganese levels using inductively-coupled plasma mass spectrometry. Mental and psychomotor development were scored using Bayley Scales of Infant Development at 6-month intervals between 12 and 36 months of age. Results At 12 months of age, the mean (SD) blood manganese level was 24.3 (4.5) μg/l and the median was 23.7 μg/l; at 24 months, these values were 21.1 (6.2) μg/l and 20.3 μg/l, respectively. Twelve- and 24-month manganese concentrations were correlated (Spearman correlation = 0.55) and levels declined over time (β = −5.7 [95% CI = −6.2 to −5.1]). We observed an inverted U-shaped association between 12-month blood manganese and concurrent mental development scores (compared with the middle 3 manganese quintiles, for the lowest manganese quintile, β = −3.3 [−6.0 to −0.7] and for the highest manganese quintile, β = −2.8 [−5.5 to −0.2]). This 12-month manganese effect was apparent but diminished with mental development scores at later ages. The 24-month manganese levels were not associated with neurodevelopment. Conclusions These results suggest a possible biphasic dose-response relationship between early-life manganese exposure at lower exposure levels and infant neurodevelopment. The data are consistent with manganese as both an essential nutrient and a toxicant.
Background:Some evidence suggests that fluoride may be neurotoxic to children. Few of the epidemiologic studies have been longitudinal, had individual measures of fluoride exposure, addressed the impact of prenatal exposures or involved more than 100 participants.Objective:Our aim was to estimate the association of prenatal exposure to fluoride with offspring neurocognitive development.Methods:We studied participants from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) project. An ion-selective electrode technique was used to measure fluoride in archived urine samples taken from mothers during pregnancy and from their children when 6–12 y old, adjusted for urinary creatinine and specific gravity, respectively. Child intelligence was measured by the General Cognitive Index (GCI) of the McCarthy Scales of Children’s Abilities at age 4 and full scale intelligence quotient (IQ) from the Wechsler Abbreviated Scale of Intelligence (WASI) at age 6–12.Results:We had complete data on 299 mother–child pairs, of whom 287 and 211 had data for the GCI and IQ analyses, respectively. Mean (SD) values for urinary fluoride in all of the mothers (n=299) and children with available urine samples (n=211) were 0.90 (0.35) mg/L and 0.82 (0.38) mg/L, respectively. In multivariate models we found that an increase in maternal urine fluoride of 0.5mg/L (approximately the IQR) predicted 3.15 (95% CI: −5.42, −0.87) and 2.50 (95% CI −4.12, −0.59) lower offspring GCI and IQ scores, respectively.Conclusions:In this study, higher prenatal fluoride exposure, in the general range of exposures reported for other general population samples of pregnant women and nonpregnant adults, was associated with lower scores on tests of cognitive function in the offspring at age 4 and 6–12 y. https://doi.org/10.1289/EHP655
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.