ABSTRACTBacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease ofAzorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legumeSesbania rostrata. The nitrogen fixation activity of anA. caulinodanslonmutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by thelonmutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by thelonmutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to apraRmutant highly expressing therebgenes. Quantitative reverse transcription-PCR analyses revealed thatrebgenes were also highly expressed in thelonmutant. Furthermore, alon rebdouble mutant formed stem nodules showing higher nitrogen fixation activity than thelonmutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of therebgenes and that high expression ofrebgenes in part causes aberrance in theA. caulinodans-S. rostratasymbiosis. In addition to the suppression ofrebgenes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.
Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.