The human KLK14 gene is one of the newly identified serine protease genes belonging to the human kallikrein family, which contains 15 members. KLK14 , like all other members of the human kallikrein family, is predicted to encode for a secreted serine protease already found in various biological fluids. This new kallikrein is mainly expressed in prostate and endocrine tissues, but its function is still unknown. Recent studies have demonstrated that KLK14 gene expression is up-regulated in prostate and breast cancer tissues, and that higher expression levels correlate with more aggressive tumors. In this work, we used phage-display substrate technology to study the substrate specificity of hK14. A phage-displayed random pentapeptide library with exhaustive diversity was screened with purified recombinant hK14. Highly specific and sensitive substrates were selected from the library. We show that hK14 has dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues. A SwissProt database search with selected sequences identified six potential human protein substrates for hK14. Two of them, laminin alpha-5 and collagen IV, which are major components of the extracellular matrix, have been demonstrated to be hydrolyzed efficiently by hK14.
A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of α1‐antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607–613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display‐selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgoño CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291–298], we studied the importance of the scaffold, serpins α1‐antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACTE8, ACTG9, AATE8 and AATG9 showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8‐based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin‐like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.
The reactive site loop of serpins undoubtedly defines in part their ability to inhibit a particular enzyme. Exchanges in the reactive loop of serpins might reassign the targets and modify the serpin-protease interaction kinetics. Based on this concept, we have developed a procedure to change the specificity of known serpins. First, reactive loops are very good substrates for the target enzymes. Therefore, we have used the phage-display technology to select from a pentapeptide phage library the best substrates for the human prostate kallikrein hK2 [Cloutier, S.M., Chagas, J.R., Mach, J.P., Gygi, C.M., Leisinger, H.J. & Deperthes, D. (2002) Eur. J. Biochem. 269, 2747Biochem. 269, -2754. Selected substrates were then transplanted into the reactive site loop of a1-antichymotrypsin to generate new variants of this serpin, able to inhibit the serine protease. Thus, we have developed some highly specific a1-antichymotrypsin variants toward human kallikrein 2 which also show high reactivity. These inhibitors might be useful to help elucidate the importance of hK2 in prostate cancer progression.Keywords: phage-display; protease; human kallikrein; inhibitor; a1-antichymotrypsin.Prostate cancer is currently the most commonly diagnosed cancer in American men. This pathology is the second leading cause of cancer death after lung cancer and the majority of the patients with locally advanced prostate cancer have an increased risk for disease progression. In this progression, proteases are believed to play a pivotal role in the malignant behaviour of cancer cells, including rapid tumor growth, invasion and metastasis. Human glandular kallikrein (hK2) protein is a trypsin-like serine protease expressed predominantly in the prostate epithelium. First isolated from human seminal plasma [1], hK2 has emerged recently as a diagnostic marker for prostate cancer. When tested in combination with assays for various forms of prostate specific antigen (PSA), hK2 seemed to be better suited to distinguish malignant from benign prostate disease than the well established marker PSA (prostate specific antigen or hK3) [2][3][4]. In addition to its role as a marker, the proteolytic activities suggest that hK2 could contribute to cancer progression. Several potential functions for this enzyme have been proposed, including the activation of urokinase-type plasminogen activator Taking into account its prostate tissue-specific expression and the involvement of all its potential substrates in cancer development, hK2 can be considered as a potential therapeutic target.The serpins (serine protease inhibitors) are a large family of proteins implicated in the regulation of complex physiological processes. These proteins of about 45 kDa can be subdivided into two groups, one being inhibitory and the other noninhibitory. Serpins contain an exposed flexible reactive-site loop (RSL), which is implicated in the interaction with the putative target protease. Following the binding to the enzyme and cleavage of the P1-P'1 scissile bond of the RSL, a covalent com...
The epidermal growth factor receptor (EGFR) plays a central role in cell life by controlling processes such as growth or proliferation. This receptor is commonly overexpressed in a number of epithelial malignancies and its upregulation is often associated with an aggressive phenotype of the tumor. Thus, targeting of EGFR represents a very promising challenge in oncology, and antibodies raised against this receptor have been investigated as potential antitumor agents. Various putative mechanisms of action were proposed for such antibodies, including decreased proliferation, induction of apoptosis, stimulation of the immunological response against targeted cancer cells or combinations thereof. We report here the development of an alternative high affinity molecule that is directed against EGFR. Production of this pentameric protein, named peptabody-EGF, includes expression in a bacterial expression system and subsequent refolding and multimerization of peptabody monomers. The protein complex contains 5 human EGF ligand domains, which confer specific binding towards the extracellular portion of EGFR. Receptor binding of the peptabody-EGF had a strong antiproliferative effect on different cancer cell lines overexpressing EGFR. However, cells expressing constitutive levels of the target receptor were barely affected. Peptabody-EGF treated cancer cells exhibited typical characteristics of apoptosis, which was found to be induced within 30 min after the addition of the peptabody-EGF. In vitro experiments demonstrated a significantly higher binding activity for peptabody-EGF than for the therapeutic monoclonal EGFR antibody Mab-425. Furthermore, the antitumor action provoked by the peptabody-EGF was greatly superior than antibody mediated effects when tested on EGFR overexpressing cancer cell lines. These findings suggest a potential application of this high affinity molecule as a novel tool for anti-EGFR therapy. ' 2006 Wiley-Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.