Sputtering a gold contact on n‐silicon or sputter‐etching the silicon surface prior to deposition of gold results in a Schottky barrier which shows a barrier height which depends on the sputtering voltage and time, and is lower than a corresponding barrier obtained by evaporation of a gold contact. On p‐silicon a sputtered gold contact also shows a barrier height influenced by the sputtering conditions. The modifications of the barrier height are caused by a thin positively charged layer formed in the semiconductor near the metal‐semiconductor junction. During sputter etching the silicon surface is subject to bombardment by Ar ions with energies of about the sputtering voltage. If this voltage is high enough charged centers will be introduced. These centers are also observed after sputter deposition at high voltage. We found that damage is caused by etching at 500V but not at 100V. This indicates that the damage found after sputter deposition was caused by rebounded Ar atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.