The standardization process of the fifth generation (5G) wireless communications has recently been accelerated and the first commercial 5G services would be provided as early as in 2018. The increasing of enormous smartphones, new complex scenarios, large frequency bands, massive antenna elements, and dense small cells will generate big datasets and bring 5G communications to the era of big data. This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling. We propose a big data and machine learning enabled wireless channel model framework. The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN). The input parameters are transmitter (Tx) and receiver (Rx) coordinates, Tx-Rx distance, and carrier frequency, while the output parameters are channel statistical properties, including the received power, root mean square (RMS) delay spread (DS), and RMS angle spreads (ASs). Datasets used to train and test the ANNs are collected from both real channel measurements and a geometry based stochastic model (GBSM). Simulation results show good performance and indicate that machine learning algorithms can be powerful analytical tools for future measurement-based wireless channel modeling.
This paper proposes a procedure of predicting channel characteristics based on a well-known machine learning (ML) algorithm and convolutional neural network (CNN), for three-dimensional (3D) millimetre wave (mmWave) massive multiple-input multiple-output (MIMO) indoor channels. The channel parameters, such as amplitude, delay, azimuth angle of departure (AAoD), elevation angle of departure (EAoD), azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA), are generated by a ray tracing software. After the data preprocessing, we can obtain the channel statistical characteristics (including expectations and spreads of the above-mentioned parameters) to train the CNN. The channel statistical characteristics of any subchannels in a specified indoor scenario can be predicted when the location information of the transmitter (Tx) antenna and receiver (Rx) antenna is input into the CNN trained by limited data. The predicted channel statistical characteristics can well fit the real channel statistical characteristics. The probability density functions (PDFs) of error square and root mean square errors (RMSEs) of channel statistical characteristics are also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.