PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host-HBV interaction, thus providing new insights into targeted therapeutic intervention. (Hepatology 2017;66:398-415).
Alpha interferon (IFN-α) induces the transfer of resistance to hepatitis B virus (HBV) from liver nonparenchymal cells (LNPCs) to hepatocytes via exosomes. However, little is known about the entry machinery and pathway involved in the transmission of IFN-α-induced antiviral activity. In this study, we found that macrophage exosomes uniquely depend on T cell immunoglobulin and mucin receptor 1 (TIM-1), a hepatitis A virus (HAV) receptor, to enter hepatocytes for delivering IFN-α-induced anti-HBV activity. Moreover, two primary endocytic routes for virus infection, clathrin-mediated endocytosis (CME) and macropinocytosis, collaborate to permit exosome entry and anti-HBV activity transfer. Subsequently, lysobisphosphatidic acid (LBPA), an anionic lipid closely related to endosome penetration of virus, facilitates membrane fusion of exosomes in late endosomes/multivesicular bodies (LEs/MVBs) and the accompanying exosomal cargo uncoating. Together, our findings provide comprehensive insights into the transmission route of macrophage exosomes to efficiently deliver IFN-α-induced antiviral substances and highlight the similarities between the entry mechanisms of exosomes and virus.IMPORTANCE Our previous study showed that LNPC-derived exosomes could transmit IFN-α-induced antiviral activity to HBV replicating hepatocytes, but the concrete transmission mechanisms, which include exosome entry and exosomal cargo release, remain unclear. In this study, we found that virus entry machinery and pathway were also applied to exosome-mediated cell-to-cell antiviral activity transfer. Macrophage-derived exosomes distinctively exploit hepatitis A virus receptor for access to hepatocytes. Later, CME and macropinocytosis are utilized by exosomes, followed by exosome-endosome fusion for efficient transfer of IFN-α-induced anti-HBV activity. We believe that understanding the cellular entry pathway of exosomes will be beneficial to designing exosomes as efficient vehicles for antiviral therapy.
The pathways that lead to the development of tissue-resident lymphocytes, including liver type 1 innate lymphoid cells (ILC1s), remain unclear. We show here that the adult mouse liver contains Lin−Sca-1+Mac-1+ hematopoietic stem cells derived from the fetal liver. This population includes Lin−CD122+CD49a+ progenitors that can generate liver ILC1s but not conventional natural killer cells. Interferon-γ (IFN-γ) production by the liver ILC1s themselves promotes the development of these cells in situ, through effects on their IFN-γR+ liver progenitors. Thus, an IFN-γ–dependent loop drives liver ILC1 development in situ, highlighting the contribution of extramedullary hematopoiesis to regional immune composition within the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.