The Qitianling granite batholith (QGB) is located in the southern Hunan Province, middle part of the Nanling Range, South China. Its total exposure area is about 520 km 2 . Based on our 25 single grain zircon U-Pb age data and 7 published data as well as the geological, petrological, and space distribution characteristics, we conclude that QGB is an Early Yanshanian (Jurassic) multi-staged composite pluton. Its formation process can be subdivided into three major stages. The first stage, emplaced at 163-160 Ma with a peak at about 161 Ma, is mainly composed of hornblende-biotite monzonitic granites and locally biotite granites, and distributed in the eastern, northern, and western peripheral parts of the pluton. The second stage, emplaced at 157-153 Ma with a peak at 157-156 Ma, is mainly composed of biotite granites and locally containing hornblende, and distributed in the middle and southeastern parts of the pluton. The third stage, emplaced at 150-146 Ma with a peak at about 149 Ma, is mainly composed of fine-grained (locally porphyritic) biotite granites, and distributed in the middle-southern part of the pluton. Each stage can be further disintegrated into several granite bodies. The first two intrusive stages comprise the major phase of QGB, and the third intrusive stage comprises the additional phase. Many second stage fine-grained granite bosses and dykes intruded into the first stage host granites with clear chilling margin-baking phenomena at their intrusive contacts. They were emplaced in the open fracture space of the earlier stage consolidated rocks. Their isotopic ages are mostly 2-6 Ma younger than their hosts. Conceivably, the time interval from magma emplacement, through cooling, crystallization, solidification, up to fracturing of the earlier stage granites cannot exceed 2-6 Ma. During the Middle-Late Jurassic in the Qitianling area and neighboring Nanling Range, the coeval granitic and basic-intermediate magmatic activities were widely developed. It indicates that the Early Yanshanian period was the culmination time of magmatic activities in this region. The Nanling Range was under a post-orogenic, intracontinental geotectonic environment with an obvious lithospheric extension and thinning. The crust-mantle interaction played an important role in formation of granitic rocks in this region.
Formation and recovery of elemental tellurium (Te 0 ) from wastewaters are required by increasing demands and scarce resources. Membrane biofilm reactor (MBfR) using gaseous electron donor has been reported as a low-cost and benign technique to reduce and recover metal (loids). In this study, we demonstrate the feasibility of nanoscale Te 0 formation by tellurite (TeO3 2-) reduction in a CH4-based MBfR.Biogenic Te 0 intensively attached on cell surface, within diameters ranging from 10 nm to 30 nm and the hexagonal nanostructure. Along with the Te 0 formation, the TeO3 2reduction was inhibited. After flushing, biofilm resumed the TeO3 2reduction ability, suggesting that the formed nanoscale Te 0 might inhibit the reduction by hindering substrate transfer of TeO3 2to microbes. The 16S rRNA gene amplicon sequencing revealed that Thermomonas and Hyphomicrobium were possibly responsible for TeO3 2reduction since they increased consecutively along with the experiment operation. The PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis showed that the sulfite reductases were positively correlated with the TeO3 2flux, indicating they were potential enzymes involved in reduction process. This study confirms the capability of CH4-based MBfR in tellurium reduction and formation, and provides more techniques for resources recovery and recycles.
High-risk populations of schizophrenia can be mainly identified as genetic high-risk based on putative endophenotypes or ultra-high-risk (UHR) based on clinically manifested symptoms. Previous studies have consistently shown brain structural abnormalities in both genetic high-risk and UHR individuals. In this study, we aimed to disentangle the convergent and divergent pattern of gray matter alterations between UHR and unaffected first-degree relatives from genetic high-risk individuals. We used structural MRI scans and voxel-based morphometry method to examine gray matter volume (GMV) differences among 23 UHR subjects meeting the Structured Interview for Prodromal Syndromes (SIPS) criteria, 18 unaffected first-degree relatives (UFDR), 26 first-episode schizophrenia patients (FES) and 54 healthy controls (CN). We found that a number of brain regions exhibited a monotonically decreasing trend of GMV from CN to UFDR to UHR to FES. Compared with CN, the UHR subjects showed significant decreases of GMV similar to the patients in the inferior temporal gyrus, fusiform gyrus, middle occipital gyrus, insula, and limbic regions. Moreover, the UHR transformed subgroup had significantly lower GMV than UHR non-transformed subgroup in the right inferior temporal/fusiform gyrus. On the other hand, the UFDR subjects only showed significant GMV decreases in the inferior temporal gyrus and fusiform. Moreover, we found GMV in the occipital lobe was negatively correlated with the UHR subjects’ composite positive symptom of SIPS, and GMV in the cerebellum was positively correlated with FES subjects’ symptom severity. Our results suggest that GMV deficits and regional dysfunction are evident prior to the onset of psychosis and are more prominent in the UHR than the UFDR individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.