In this paper, a copper-based bond emery wheel was prepared by vacuum hot pressing sintering through powder metallurgy. The effects of various bond contents on the grinding performance of the copperbased bond grinding wheel were studied using a self-made experimental device; the friction coefficients between the friction pairs and roughness of the grinded rail surface were also obtained. The results show that the grinding wheel had the best grinding performance when the content of the copper-based bond was at 35 wt.-%, the friction coefficient 0.29, the grinding ratio 81.34, and the surface roughness 7.191 μm, which meet the roughness requirements of rail grinding. The microstructure of the rail surface and debris after grinding were studied by scanning electron microscope and energy spectrum analysis. Adhesive wear, abrasive wear, oxidation wear and delamination wear occurred during the friction and wear process. The grinding behavior of grinding wheels was analyzed in accordance with the experimental results.
In this paper, a copper-based bond emery wheel was prepared by vacuum hot pressing sintering through powder metallurgy. The effects of various bond contents on the grinding performance of the copperbased bond grinding wheel were studied using a self-made experimental device; the friction coefficients between the friction pairs and roughness of the grinded rail surface were also obtained. The results show that the grinding wheel had the best grinding performance when the content of the copper-based bond was at 35 wt.-%, the friction coefficient 0.29, the grinding ratio 81.34, and the surface roughness 7.191 μm, which meet the roughness requirements of rail grinding. The microstructure of the rail surface and debris after grinding were studied by scanning electron microscope and energy spectrum analysis. Adhesive wear, abrasive wear, oxidation wear and delamination wear occurred during the friction and wear process. The grinding behavior of grinding wheels was analyzed in accordance with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.