Poly(lactic acid) (PLA) is an emerging plastic that has insufficient properties (e.g., it is too brittle) for widespread commercial use. Previous research results have shown that the strength and toughness of basalt fiber reinforced PLA composites (PLA/BF) still need to be improved. To address this limitation, this study aimed to obtain an effective compatibilizer for PLA/BF. Melt-blending of poly(butylene adipate-co-terephthalate) (PBAT) with PLA in the presence of 4,4′-methylene diphenyl diisocyanate (MDI: 0.5 wt% of the total resin) afforded PLA/PBAT-MDI triblock copolymers. The triblock copolymers were melt-blended to improve the interfacial adhesion of PLA/BF and thus obtain excellent performance of the PLA-ternary polymers. This work presents the first investigation on the effects of PLA/PBAT-MDI triblock copolymers as compatibilizers for PLA/BF blends. The resultant mechanics, the morphology, interface, crystallinity, and thermal stability of the PLA-bio polymers were comprehensively examined via standard characterization techniques. The crystallinity of the PLA-ternary polymers was as high as 43.6%, 1.44× that of PLA/BF, and 163.5% higher than that of pure PLA. The stored energy of the PLA-ternary polymers reached 20,306.2 MPa, 5.5× than that of PLA/BF, and 18.6× of pure PLA. Moreover, the fatigue life of the PLA-ternary polymers was substantially improved, 5.85× than that of PLA/PBAT-MDI triblock copolymers. Thus, the PLA/PBAT-MDI triblock copolymers are compatibilizers that improve the mechanical properties of PLA/BF.
Smart materials have great potential in many biomedical applications, in which biodegradable shape memory polymers (SMPs) can be used as surgical sutures, implants, and stents. Poly(DL-lactide-co-trimethylene carbonate) (PDLLTC) represents one of the promising SMPs and is widely used in biomedical applications. However, the relationship between its shape memory property and chemical structure has not been fully studied and needs further elaboration. In this work, PDLLTC copolymers in different compositions have been synthesized, and their shape memory properties have been investigated. It has been found that the shape memory property is related to the chemical composition and polymeric chain segments. The copolymer with a DLLA/TMC ratio of 75:25 (PDLLTC7525) has been demonstrated with great shape fixation and recovery ratio at human body temperature. Furthermore, PDLLTC7525-based self-morphing small-diameter vascular scaffolds adhered with inner electrospun aligned gelatin/hyaluronic acid (Gel/HA) nanofibers have been constructed, as a merit of its shape memory property. The scaffolds have been demonstrated to facilitate the proliferation and adhesion of endothelial cells on the inner layer. Therefore, PDLLTC with tailorable shape memory properties represents a promising candidate for the development of SMPs, as well as for small-diameter vascular scaffolds construction.
Defect-rich hcp UiO-66-NO2 was synthesized via mixed-linker induced crystal transformation from fcu UiO-66-NO2/NH2. The defect concentration and porosity of hcp UiO-66-NO2 can be fine-tuned by varying the BDC-NH2/BDC-NO2 ratio, which...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.